Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2017 (2017), Article ID 9868694, 12 pages
https://doi.org/10.1155/2017/9868694
Review Article

Salvia miltiorrhiza Roots against Cardiovascular Disease: Consideration of Herb-Drug Interactions

1Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical College, Haikou 571199, China
2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
3Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99212, USA

Correspondence should be addressed to Dan-Dan Tian; moc.liamtoh@68ddnait

Received 19 January 2017; Accepted 12 March 2017; Published 3 April 2017

Academic Editor: Ekaterina A. Ivanova

Copyright © 2017 Feng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Cardiovascular Diseases (CVDs), 2014, http://www.who.int/mediacentre/factsheets/fs317/en/.
  2. J.-U. Peters, “Polypharmacology—foe or friend?” Journal of Medicinal Chemistry, vol. 56, no. 22, pp. 8955–8971, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. World Health Organization, Traditional Medicine, 2008, http://www.siav-itvas.org/images/stories/doc/agopuntura_scientifica/WHO_Traditional_medicine_2008.pdf.
  4. S. J. Grant, Y. S. Bin, H. Kiat, and D. H.-T. Chang, “The use of complementary and alternative medicine by people with cardiovascular disease: a systematic review,” BMC Public Health, vol. 12, article 299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Brantley, A. A. Argikar, Y. S. Lin, S. Nagar, and M. F. Paine, “Herb-drug interactions: challenges and opportunities for improved predictions,” Drug Metabolism and Disposition, vol. 42, no. 3, pp. 301–317, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. W. I. Lu and D. P. Lu, “Impact of chinese herbal medicine on american society and health care system: perspective and concern,” Evidence-based Complementary and Alternative Medicine, vol. 2014, Article ID 251891, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. D.-D. Tian, W.-W. Jia, X.-W. Liu et al., “Methylation and its role in the disposition of tanshinol, a cardiovascular carboxylic catechol from Salvia miltiorrhiza roots (Danshen),” Acta Pharmacologica Sinica, vol. 36, no. 5, pp. 627–643, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. X.-Y. Ji, B. K.-H. Tan, and Y.-Z. Zhu, “Salvia miltiorrhiza and ischemic diseases,” Acta Pharmacologica Sinica, vol. 21, no. 12, pp. 1089–1094, 2000. View at Google Scholar · View at Scopus
  9. Y. Jia, F. Huang, S. Zhang, and S.-W. Leung, “Is danshen (Salvia miltiorrhiza) dripping pill more effective than isosorbide dinitrate in treating angina pectoris? A systematic review of randomized controlled trials,” International Journal of Cardiology, vol. 157, no. 3, pp. 330–340, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. B.-L. Ma and Y.-M. Ma, “Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research,” Drug Metabolism Reviews, vol. 48, no. 1, pp. 1–26, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. D. D. Tian and Z. Y. Hu, “CYP3A4-mediated pharmacokinetic interactions in cancer therapy,” Current Drug Metabolism, vol. 15, no. 8, pp. 808–817, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-S. Zhao, F. Chen, and L. Li, “Are circulating metabolites important in pharmacokinetic drug-drug interactions? A retroanalysis of clinical data,” Current Drug Metabolism, vol. 15, no. 8, pp. 767–790, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-Y. Su, Q.-L. Ming, K. Rahman, T. Han, and L.-P. Qin, “Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology,” Chinese Journal of Natural Medicines, vol. 13, no. 3, pp. 163–182, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Hochman, C. Tang, and T. Prueksaritanont, “Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective,” Journal of Pharmaceutical Sciences, vol. 104, no. 3, pp. 916–929, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Liu, M. Wright, and C. E. C. A. Hop, “Rational use of plasma protein and tissue binding data in drug design,” Journal of Medicinal Chemistry, vol. 57, no. 20, pp. 8238–8248, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Schmidt, D. Gonzalez, and H. Derendorf, “Significance of protein binding in pharmacokinetics and pharmacodynamics,” Journal of Pharmaceutical Sciences, vol. 99, no. 3, pp. 1107–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. F. M. Musteata, “Monitoring free drug concentrations: challenges,” Bioanalysis, vol. 3, no. 15, pp. 1753–1768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Persky and G. M. Pollack, Foundations in Pharmacokinetics (Enhanced Edition), Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2017.
  19. X. Peng, W. Qi, R. Huang, R. Su, and Z. He, “Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin,” PLoS ONE, vol. 10, no. 4, Article ID e0118274, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Shao, N. Ai, D. Xu, and X. Fan, “Exploring the interaction between Salvia miltiorrhiza and human serum albumin: insights from herb-drug interaction reports, computational analysis and experimental studies,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 161, pp. 1–7, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Chen, H. Cao, S. Zhu et al., “Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding,” Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, vol. 81, no. 1, pp. 645–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Peng, X. Wang, W. Qi, R. Su, and Z. He, “Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability,” Food Chemistry, vol. 192, pp. 178–187, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. J. H. Li and S. M. Wang, “Application of molecular modelling and spectroscopic approaches for investigating the binding of tanshinone IIA to human serum albumin,” The Journal of Chemical Thermodynamics, vol. 58, pp. 206–210, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Chen, X. Tu, and Y. Zhang, “Determination of plasma protein binding rate of salvianol acid a by ultrafiltration,” Yao Xue Xue Bao, vol. 2, 2012. View at Google Scholar
  25. Y.-T. Wu, Y.-F. Chen, Y.-J. Hsieh, I. Jaw, M.-S. Shiao, and T.-H. Tsai, “Bioavailability of salvianolic acid B in conscious and freely moving rats,” International Journal of Pharmaceutics, vol. 326, no. 1-2, pp. 25–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-J. Jing, X.-H. Chen, X. Liu, K.-S. Bi, and D.-A. Guo, “Determination of the binding rate of rat plasma protein with salvianolic acid B,” Yaoxue Xuebao, vol. 45, no. 3, pp. 343–346, 2010. View at Google Scholar · View at Scopus
  27. H. Hao, G. Wang, N. Cui, J. Li, L. Xie, and Z. Ding, “Pharmacokinetics, absorption and tissue distribution of tanshinone IIA solid dispersion,” Planta Medica, vol. 72, no. 14, pp. 1311–1317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Liu, X. Wang, Z. Cai, and F. S. C. Lee, “Effect of tanshinone IIA on the noncovalent interaction between warfarin and human serum albumin studied by electrospray ionization mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 19, no. 10, pp. 1568–1575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Zhang, B. Ge, L. Zhou, T.-N. Lam, and Z. Zuo, “Induction of liver cytochrome P450s by Danshen-Gegen formula is the leading cause for its pharmacokinetic interactions with warfarin,” Journal of Ethnopharmacology, vol. 154, no. 3, pp. 672–686, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Gupta, M. Jalali, A. Wells, and A. Dasgupta, “Drug-herb interactions: unexpected suppression of free Danshen concentrations by salicylate,” Journal of Clinical Laboratory Analysis, vol. 16, no. 6, pp. 290–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Chen, X.-X. Lin, W.-H. Huang et al., “Sodium tanshinone IIA sulfonate and its interactions with human CYP450s,” Xenobiotica, vol. 46, no. 12, pp. 1085–1092, 2016. View at Publisher · View at Google Scholar · View at Scopus
  32. C.-Z. Qin, X. Ren, H.-H. Zhou, X.-Y. Mao, and Z.-Q. Liu, “Inhibitory effect of salvianolate on human cytochrome P450 3A4 in vitro involving a noncompetitive manner,” International Journal of Clinical and Experimental Medicine, vol. 8, no. 9, pp. 15549–15555, 2015. View at Google Scholar · View at Scopus
  33. F. Qiu, J. Jiang, Y. Ma et al., “Opposite effects of single-dose and multidose administration of the ethanol extract of danshen on CYP3A in healthy volunteers,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 730734, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wang and J. H.-K. Yeung, “Investigation of cytochrome P450 1A2 and 3A inhibitory properties of Danshen tincture,” Phytomedicine, vol. 19, no. 3-4, pp. 348–354, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Wang and J. H. K. Yeung, “Effects of Salvia miltiorrhiza extract on the liver CYP3A activity in humans and rats,” Phytotherapy Research, vol. 25, no. 11, pp. 1653–1659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wang, C. M. Cheung, W. Y. W. Lee, P. M. Y. Or, and J. H. K. Yeung, “Major tanshinones of Danshen (Salvia miltiorrhiza) exhibit different modes of inhibition on human CYP1A2, CYP2C9, CYP2E1 and CYP3A4 activities in vitro,” Phytomedicine, vol. 17, no. 11, pp. 868–875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Qiu, R. Zhang, J. Sun et al., “Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes,” Drug Metabolism & Disposition, vol. 36, no. 7, pp. 1308–1314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. F. He, H.-C. Bi, Z.-Y. Xie et al., “Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: application to high-throughput inhibition screening of terpenoids,” Rapid Communications in Mass Spectrometry, vol. 21, no. 5, pp. 635–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Y.-F. Ueng, Y.-H. Kuo, H.-C. Peng et al., “Diterpene quinone tanshinone IIA selectively inhibits mouse and human cytochrome P4501A2,” Xenobiotica, vol. 33, no. 6, pp. 603–613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Q.-L. Wang, Q. Wu, Y.-Y. Tao, C.-H. Liu, and H. El-Nezami, “Salvianolic acid B modulates the expression of drug-metabolizing enzymes in HepG2 cells,” Hepatobiliary and Pancreatic Diseases International, vol. 10, no. 5, pp. 502–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Zhou, K. Chan, and J. H. K. Yeung, “Herb-drug interactions with Danshen (Salvia miltiorrhiza): a review on the role of cytochrome P450 enzymes,” Drug Metabolism and Drug Interactions, vol. 27, no. 1, pp. 9–18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Yu, S. Ye, H. Sun et al., “PXR-mediated transcriptional activation of CYP3A4 by cryptotanshinone and tanshinone IIA,” Chemico-Biological Interactions, vol. 177, no. 1, pp. 58–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Zhang, J. Sun, L. Ma et al., “Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line,” Toxicology and Applied Pharmacology, vol. 252, no. 1, pp. 18–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. J. Hatfield, L. G. Tsurkan, J. L. Hyatt et al., “Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza (“Danshen”),” Journal of Natural Products, vol. 76, no. 1, pp. 36–44, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Lu, J. Yang, X. Gao et al., “Plasma and urinary tanshinol from Salvia miltiorrhiza (Danshen) can be used as pharmacokinetic markers for cardiotonic pills, a cardiovascular herbal medicine,” Drug Metabolism and Disposition, vol. 36, no. 8, pp. 1578–1586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Zhang, T. Akao, N. Nakamura et al., “Extremely low bioavailability of magnesium lithospermate B, an active component from Salvia miltiorrhiza, in rat,” Planta Medica, vol. 70, no. 2, pp. 138–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Wang, Q. Zhang, X. Li et al., “Pharmacokinetics and metabolism of lithospermic acid by LC/MS/MS in rats,” International Journal of Pharmaceutics, vol. 350, no. 1-2, pp. 240–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Zhang, P. Jiang, M. Ye, S.-H. Kim, C. Jiang, and J. Lü, “Tanshinones: sources, pharmacokinetics and anti-cancer activities,” International Journal of Molecular Sciences, vol. 13, no. 10, pp. 13621–13666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Zhang, M. Huang, S. Guan et al., “A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1285–1294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. F. Paine and N. H. Oberlies, “Clinical relevance of the small intestine as an organ of drug elimination: drug-fruit juice interactions,” Expert Opinion on Drug Metabolism and Toxicology, vol. 3, no. 1, pp. 67–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. M. Giacomini, S.-M. Huang, D. J. Tweedie et al., “Membrane transporters in drug development,” Nature Reviews Drug Discovery, vol. 9, no. 3, pp. 215–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. König, F. Müller, and M. F. Fromm, “Transporters and drug-drug interactions: important determinants of drug disposition and effects,” Pharmacological Reviews, vol. 65, no. 3, pp. 944–966, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Wu, J. Ma, Y. Ye, and G. Lin, “Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions,” Journal of Chromatography B, vol. 1026, pp. 236–253, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Wang and D. H. Sweet, “Competitive inhibition of human organic anion transporters 1 (SLC22A6), 3 (SLC22A8) and 4 (SLC22A11) by major components of the medicinal herb Salvia miltiorrhiza (Danshen),” Drug Metabolism and Pharmacokinetics, vol. 28, no. 3, pp. 220–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Wang and D. H. Sweet, “Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11),” Biochemical Pharmacology, vol. 84, no. 8, pp. 1088–1095, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Jia, F. Du, X. Liu et al., “Renal tubular secretion of tanshinol: molecular mechanisms, impact on its systemic exposure, and propensity for dose-related nephrotoxicity and for renal herb-drug interactions,” Drug Metabolism and Disposition, vol. 43, no. 5, pp. 669–678, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Cai, S. Chen, W. Zhang et al., “Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway,” Phytomedicine, vol. 21, no. 12, pp. 1725–1732, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. J.-L. Zhang, M. Cui, Y. He, H.-L. Yu, and D.-A. Guo, “Chemical fingerprint and metabolic fingerprint analysis of Danshen injection by HPLC-UV and HPLC-MS methods,” Journal of Pharmaceutical and Biomedical Analysis, vol. 36, no. 5, pp. 1029–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Hu, K. K. W. To, L. Wang et al., “Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza,” Phytomedicine, vol. 21, no. 11, pp. 1264–1272, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. X.-X. Li, Z.-W. Zhou, and S.-F. Zhou, “Role of P-glycoprotein in the transport of tanshinone I, one active triterpenoid from Salvia miltiorrhiza,” Drug Metabolism Letters, vol. 2, no. 3, pp. 223–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. X.-Y. Yu, S.-G. Lin, Z.-W. Zhou et al., “Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge,” Current Drug Metabolism, vol. 8, no. 4, pp. 325–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Qiu, J. Zeng, S. Liu et al., “Effects of danshen ethanol extract on the pharmacokinetics of fexofenadine in healthy volunteers,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 473213, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Yin, M. Yang, Y. Wang et al., “Tanshinone IIA increases mRNA expression of efflux transporters in cultured human intestinal cell,” The American Journal of Chinese Medicine, vol. 38, no. 5, pp. 995–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Wang and J. H. K. Yeung, “Effects of the aqueous extract from Salvia miltiorrhiza Bunge on caffeine pharmacokinetics and liver microsomal CYP1A2 activity in humans and rats,” Journal of Pharmacy and Pharmacology, vol. 62, no. 8, pp. 1077–1083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Qiu, G. Wang, Y. Zhao et al., “Effect of danshen extract on pharmacokinetics of theophylline in healthy volunteers,” British Journal of Clinical Pharmacology, vol. 65, no. 2, pp. 270–274, 2008. View at Google Scholar
  66. Y. Chen, J.-H. Tu, Y.-J. He et al., “Effect of sodium tanshinone II A sulfonate on the activity of CYP1A2 in healthy volunteers,” Xenobiotica, vol. 39, no. 7, pp. 508–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Qiu, G. Wang, R. Zhang, J. Sun, J. Jiang, and Y. Ma, “Effect of danshen extract on the activity of CYP3A4 in healthy volunteers,” British Journal of Clinical Pharmacology, vol. 69, no. 6, pp. 656–662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Wang, H. Sun, L. Yang et al., “Absence of an effect of T89 on the steady-state pharmacokinetics and pharmacodynamics of warfarin in healthy volunteers,” The Journal of Clinical Pharmacology, vol. 54, no. 2, pp. 234–239, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. Y.-H. Kuo, Y.-L. Lin, M.-J. Don, R.-M. Chen, and Y.-F. Ueng, “Induction of cytochrome P450-dependent monooxygenase by extracts of the medicinal herb Salvia miltiorrhiza,” Journal of Pharmacy and Pharmacology, vol. 58, no. 4, pp. 521–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Qin, B. Wang, X. Lu, H. Liu, L. Wang, and W. Qi, “Determination of Sodium Tanshinone IIA Sulfonate in human plasma by LC-MS/MS and its application to a clinical pharmacokinetic study,” Journal of Pharmaceutical and Biomedical Analysis, vol. 121, pp. 204–208, 2016. View at Publisher · View at Google Scholar · View at Scopus
  71. L. S. Kaminsky and Z.-Y. Zhang, “Human P450 metabolism of warfarin,” Pharmacology and Therapeutics, vol. 73, no. 1, pp. 67–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. L. S. Tam, T. Y. K. Chan, W. K. Leung, and J. A. J. H. Critchley, “Warfarin interactions with Chinese traditional medicines: danshen and methyl salicylate medicated oil,” Australian and New Zealand Journal of Medicine, vol. 25, no. 3, p. 258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. C. M. Yu, J. C. N. Chan, and J. E. Sanderson, “Chinese herbs and warfarin potentiation by ‘danshen’,” Journal of Internal Medicine, vol. 241, no. 4, pp. 337–339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. M. B. Izzat, A. P. C. Yim, and M. H. El-Zufari, “A taste of chinese medicine!,” Annals of Thoracic Surgery, vol. 66, no. 3, pp. 941–942, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. Q. Yan and J. Q. Jiang, “Effect of Danshen tablet on anticogulation of warfarin,” Chinese Traditional Patent Medicine, vol. 30, no. 1, pp. 19–21, 2008. View at Google Scholar
  76. B.-B. Chang, L. Zhang, W.-W. Cao et al., “Pharmacokinetic interactions induced by content variation of major water-soluble components of Danshen preparation in rats,” Acta Pharmacologica Sinica, vol. 31, no. 5, pp. 638–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. Z.-J. Guo, Y. Zhang, X. Tang, H. Li, and Q.-S. Sun, “Pharmacokinetic interaction between tanshinones and polyphenolic extracts of Salvia miltinorrhiza Bunge after intravenous administration in rats,” Biological and Pharmaceutical Bulletin, vol. 31, no. 8, pp. 1469–1474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Song, T.-J. Hang, Z. Zhang, and H.-Y. Chen, “Effects of the coexisting diterpenoid tanshinones on the pharmacokinetics of cryptotanshinone and tanshinone IIA in rat,” European Journal of Pharmaceutical Sciences, vol. 32, no. 4-5, pp. 247–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Dai, X. Li, X. Li, L. Bai, Y. Li, and M. Xue, “Coexisted components of Salvia miltiorrhiza enhance intestinal absorption of cryptotanshinone via inhibition of the intestinal P-gp,” Phytomedicine, vol. 19, no. 14, pp. 1256–1262, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Huang, J. Zhang, J. Bai, W. Xu, D. Wu, and X. Qiu, “LC-MS/MS determination and interaction of the main components from the traditional Chinese drug pair Danshen-Sanqi based on rat intestinal absorption,” Biomedical Chromatography, vol. 30, no. 12, pp. 1928–1934, 2016. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Yang, K. Zhang, X. Lin et al., “Pharmacokinetic comparisons of single herb extract of Fufang Danshen preparation with different combinations of its constituent herbs in rats,” Journal of Pharmaceutical and Biomedical Analysis, vol. 67-68, pp. 77–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Long, S.-C. Zhang, L. Wen, L. Mu, F. Yang, and G. Chen, “In vivo distribution and pharmacokinetics of multiple active components from Danshen and Sanqi and their combination via inner ear administration,” Journal of Ethnopharmacology, vol. 156, pp. 199–208, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Zhou, M. S. S. Chow, and Z. Zuo, “Effect of sodium caprate on the oral absorptions of danshensu and salvianolic acid B,” International Journal of Pharmaceutics, vol. 379, no. 1-2, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Zhao, Z.-D. Gao, D.-E. Han et al., “Influence of rifampicin on the pharmacokinetics of salvianolic acid B may involve inhibition of organic anion transporting polypeptide (Oatp) mediated influx,” Phytotherapy Research, vol. 26, no. 1, pp. 118–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Li, F. Wang, Y. Huang et al., “Systemic exposure to and disposition of catechols derived from Salvia miltiorrhiza roots (Danshen) after intravenous dosing danhong injection in human subjects, rats, and dogs,” Drug Metabolism and Disposition, vol. 43, no. 5, pp. 679–690, 2015. View at Publisher · View at Google Scholar · View at Scopus