Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2018 (2018), Article ID 8354350, 13 pages
https://doi.org/10.1155/2018/8354350
Research Article

Systematic Analysis of RNA Regulatory Network in Rat Brain after Ischemic Stroke

1Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
2Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
3Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Correspondence should be addressed to Yang Wang; moc.621@nc36ygnaw and Zhi-Feng Deng; moc.621@36fzgned

Received 9 August 2017; Revised 13 November 2017; Accepted 26 November 2017; Published 8 January 2018

Academic Editor: Paul Harrison

Copyright © 2018 Juan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Although extensive studies have identified large number of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in ischemic stroke, the RNA regulation network response to focal ischemia remains poorly understood. In this study, we simultaneously interrogate the expression profiles of lncRNAs, miRNAs, and mRNAs changes during focal ischemia induced by transient middle cerebral artery occlusion. A set of 1924 novel lncRNAs were identified and may involve brain injury and DNA repair as revealed by coexpression network analysis. Furthermore, many short interspersed elements (SINE) mediated lncRNA:mRNA duplexes were identified, implying that lncRNAs mediate Staufen1-mediated mRNA decay (SMD) which may play a role during focal ischemia. Moreover, based on the competitive endogenous RNA (ceRNA) hypothesis, a stroke regulatory ceRNA network which reveals functional lncRNA:miRNA:mRNA interactions was revealed in ischemic stroke. In brief, this work reports a large number of novel lncRNAs responding to focal ischemia and constructs a systematic RNA regulation network which highlighted the role of ncRNAs in ischemic stroke.