Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2018, Article ID 8459503, 8 pages
https://doi.org/10.1155/2018/8459503
Research Article

Endowing iPSC-Derived MSCs with Angiogenic and Keratinogenic Differentiation Potential: A Promising Cell Source for Skin Tissue Engineering

1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
2Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Correspondence should be addressed to Yi Man; moc.621@302087iynam and Yili Qu; moc.621@iliyqq

Received 19 April 2018; Revised 23 June 2018; Accepted 17 July 2018; Published 13 September 2018

Academic Editor: Magali Cucchiarini

Copyright © 2018 Weimin Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell-based therapy for skin regeneration. Aiming to establish human iPSCs as a potential cell source for skin tissue engineering, we expect to obtain an epidermal-like cell line with angiogenic and keratinogenic differentiation potential via inducing iPSC-derived mesenchymal stem cells (iPSC-MSCs) with basic fibroblast growth factor (bFGF) and/or keratinocyte growth factor (KGF). The results show that iPSC-MSCs were successfully induced with a positive FGFR/KGFR expression on the cell surface. BFGF/KGF induction could significantly increase the expression of vascularization marker CD31 and keratinization marker CK10, respectively, while when combined together, although CD31 and CK10 were still positively expressed, their expressions were lower than that of the single induction group, suggesting that the effects of the two growth factors interfered with each other. This cell line with angiogenic and keratinogenic differentiation potential provides a promising new source of cells for the construction of well vascularized and keratinized tissue engineered skin, furthermore establishing an effective strategy for iPSC-based therapy in skin tissue engineering.