Review Article

Pharmacological Benefits and Risk of Using Hormones in Organ Perfusion and Preservation Solutions in the Aspect of Minimizing Hepatic Ischemia-Reperfusion Injury during Storage

Table 1

Strategies based on modification to preservation solutions.

Author, year of publicationHormoneSpeciesPreservation solution modification/cold ischemia/key settings of the experimentOutcome measures, n (intervention, I/control, C)Hormone doseDrugs/substances used simultaneously/doseEffects of hormone

Zaouali et al., 2011 [1]MelatoninRatIGL-1/24 h, 4°C/normothermic reperfusion: 2 h, 37°CI: IGL + MEL; n = 16
C1: Ringer’s lactate; n = 16
C2: IGL-1; n = 16
C3: UW; n = 16
100 μmol/L(i) Lower transaminase levels (AST/ALT)
(ii) Higher bile production
(iii) Higher BSP clearance
(iv) Reduced vascular resistance
(v) Increased nitrites/nitrates
(vi) Prevention of oxidative stress
Zaouali et al., 2013 [2]RatIGL-1/24 h, 4°C/normothermic reperfusion: 2 h, 37°CI: IGL + MEL + TMZ;
C1: Ringer’s lactate;
C2: IGL-1;
C3: UW;
C4: IGL + MEL + TMZ + araA
100 μmol/LTMZ
10−3μm/L
(i) Decreased GRP78, pPERK, and CHOP activation after reperfusion
(ii) Inhibition of AMPK induced an increase in ER stress
(iii) Significant reduction in autophagy
Gunal et al., 2010 [3]RatUW/48 h, 4°CI: UW + MEL; n = 10
C: UW; n = 10
30 mg/L(i) Lower transaminase levels (LDH, AST, and ACP)
(ii) Induced heat-shock protein (HSP 70)
(iii) Decreased lipid peroxidation
(iv) Prevented Kupffer cell activation and inflammation

Ryszka et al., 2004 [4]ProlactinRabbitRinger/24 h, 4–6°CI: Ringer + PRL; n = 5
C: Ringer; n = 5
100 IU/L(i) Lower transaminase levels (AST and ALT)
(ii) Slowing the rate of transaminase release
Dolińska et al., 2011 [5]PigHTK/24 h, 4–6°CI: HTK + PRL; n = 5
C: HTK; n = 5
100 IU/L(i) Lower transaminase levels (AST and ALT)
(ii) Slowing the rate of transaminase release
Ryszka et al., 2011 [6]PigHTK/24 h, 4–6°C/cold reperfusionI: HTK + PRL; n = 6
C: HTK; n = 6
3 IU/LCys
0.3 mmol/L
(i) Lower levels of AST, ALT, LDH, and lactic acid
(ii) Less release of K+, Mg2+
(iii) Greater release of Na+, Ca2+
Szulc-Musioł et al., 2018 [7]RabbitHTK/in situI: HTK + PRL; n = 10
C: HTK; n = 10
2.5 μg/g liver(i) Inhibition of liver cell cytolysis
Budziński et al., 2011 [8]PigHTK/12 h, 4°CI: HTK + PRL; n = 6
C: Ringer; n = 6
C: UW; n = 6
C: HTK; n = 6
20 IU/L(i) High apoptosis level
Budziński et al., 2011 [9]PigHTK
/12 h, 4°C
I: HTK + PRL; n = 6
C: Ringer; n = 6
C: UW; n = 6
C: HTK; n = 6
20 IU/L(i) Significantly decreased dopamine and adrenaline concentrations

Koetting et al., 2010 [10]DopamineRatHTK
/18 h, 4°C/normothermic reperfusion: 2 h, 37°C
I: HTK + DA; n = 6
C: HTK; n = 6
10 μmol/L
50 μmol/L 100 μmol/L
(i) Reduction in ALT, LDH, GLDH release
(ii) Reduced histologic signs of tissue injury
(iii) Doubled bile production and tissue ATP
Minor et al., 2011 [11]RatHTK
/20 h, 4°C/HMP, normothermic reperfusion: 2 h, 37°C
I: HTK + DA; n = 6 C: HTK; n = 610 μmol/L 50 μmol/L 100 μmol/L(i) Reduction in ALT release
(ii) Enhanced bile flow
(iii) Reduced lipid peroxidation

Eipel et al., 2012 [12]ErythropoietinMouseHTK
/24 h, 4°C/normothermic reperfusion: 2 h
I: HTK + EPO; n = 6
C: HTK; n = 6
C: livers without cold storage; n = 6
10 IU/mL(i) Prevented induced denudation of the endothelial lining in steatotic livers, but aggravated in lean livers
(ii) Enzyme (AST, LDH, GLDH) release reduced to 50% in steatotic livers, but not in lean livers
(iii) Steatotic livers presented with lower oxygen consumption than lean livers
(iv) Reduced MAPK-dependent Erk phosphorylation in lean livers

Li et al., 2003 [13]InsulinRatUW/24 h, 4°CI: UW + Ins; n = 14
C: UW; n = 20
40 IU/L(i) Higher transaminase levels (AST and ALT)
(ii) Repressed expression of 215 genes
(iii) Exacerbated graft ischemic injury
Li et al., 2004 [14]RatUW/24 h, 0–4°CI: UW + Ins; n = 5
C: UW; n = 5
40 IU/L(i) Deteriorated energy regeneration
(ii) Acceleration of lipoprotein metabolism through upregulation of the activity of apolipoprotein C‐III (Apo C‐III)
(iii) Inhibition of the insulin‐like growth factor‐binding protein‐1 pathway

Minor et al., 1998 [15]GlucagonRatUW/24 h, 4°C/normothermic perfusion: 45 min, 37°CI: UW + Gluc; n = 5
C: UW; n = 5
0.5 μg/mL(i) Enhanced endogenous cAMP signal
(ii) Reduction in ALT release
(iii) Threefold increase in hepatic bile production
(iv) Restored ATP tissue levels

Zaouali et al., 2010 [16]IGF-1RatIGL-1/24 h, 4°C/warm reperfusion: 2 h, 37°CI: IGL-1 + IGF-1; n = 8
C: IGL-1, n = 8
10 μg/L(i) Lower transaminase levels (ALT, AST)
(ii) Increased bile clearance
(iii) Reduction in vascular resistance
(iv) Activation of AKT
(iv) Constitutive endothelial nitric oxide synthase

Zaouali et al., 2010 [17]EGF-1RatIGL-1/24 h, 4°C/warm reperfusion: 2 h, 37°CI: IGL-1 + EGF-1; n = 8
C: IGL-1, n = 8
10 μg/L(i) Lower transaminase levels
(ii) Greater bile production
(iii) Ameliorated flow rates

Zaouali et al., 2010 [18]IGF-1
EGF
RatUW/24 h, 4°C/normothermic reperfusion: 2 h, 37°CI1: UW + IGF-1; n = 16
I2: UW + EGF; n = 16
I3: UW + IGF-1 + EGF; n = 16
C: UW; n = 16
10 μg/LIGF-1
10 μg/LEGF
AKT inhibitor
1.5 mg/L
(i) IGF‐I could be a more appropriate clinical therapy than EGF
(ii) EGF and IGF‐1 upregulated AKT
(iii) EGF and IGF-I (separately or in combination) reduced hepatic injury and improved survival in recipients
Ambiru et al., 2004 [19]IGF-1
EGF
NGF
PigUW/18 h, 4°C/cold reperfusionI: UW + IGF-1 + EGF + NGF; n = 7
C: UW; n = 7
10 μg/LEGF
10 μg/LIGF-1
20 μg/L(NGF)-β
Bactenecin:
1 mg/L
SP: 2.5 mg/L
(i) Transaminases (AST, ALT) were comparable between the two groups
(ii) Higher ATP levels
(iii) Less haemorrhagic necrosis
(iv) Cold ischemic time extended to 18 h

Takeda et al., 1999 [20]hrHGFRatUWI: UW + hrHGF
C: UW
0.3 μg/mL100 μg/body hrHGF was injected(i) Reduced injury in SEC
(ii) Prevented expansion of fatty droplets
(iii) Protective effect
Takeda et al., 2003 [21]RatUW/24 h, 4°CI: UW + hrHGF
C: UW
0.1 μg/mL or 1 μg/mL(i) Decreased transaminase levels
(ii) Diminished hepatocellular damage in histological examination

Boehnert et al., 2005 [22]hr relaxin-2RatUW/3.5 h, 4°C or 3.5 h, 20°C/cold reperfusion: 4°C or warm reperfusion: 20°CI: UW + hrRLX-2; n = 10
C: UW; n = 10
32 ng/mL (reperfusion solutions)
64 ng/mL (preservation solution)
(i) Decreased MDA activity
(ii) Decreased MPO activity
Boehnert et al., 2008 [23]RatHTK/5 h, 4°C or 5 h, 20°C/cold reperfusion: 4°C or warm reperfusion: 20°CI: HTK + hrRLX-2; n = 20
C: HTK; n = 10
64 ng/mL(i) Decreased MDA activity
(ii) Decreased MPO activity

Aliosmanoglu et al., 2013 [24]Prostaglandin E-1RatHTK/12 h, 4°C UW/12 h, 4°CI1: HTK + PGE-1; n = 6
I2: UW + PGE-1; n = 6
C1: Ringer’s lactate; n = 6
C2: HTK; n = 6 C3:UW; n = 6
20 μg/kg(i) Decreased transaminase levels
(ii) Decreased pathologic injury
Morioka et al., 2003 [25]RatHTK/2 h or 6 h, 4°C
Ringer’s lactate/2 h or 6 h, 4°C
I1: HTK + PGE-1; Ringer’s lactate + PGE-1
C1: fatty livers + 0.3 mg/kg FK506
C2: fatty livers
1 μg/mL(i) 75% 7-day survival
(ii) Decreased ALT and hyaluronic acid levels
(iii) Reduced tissue injury

TMZ, trimetazidine; MEL, melatonin; araA, adenine 9‐β‐D‐arabinofuranoside, an inhibitor of AMPK; PRL, prolactin; Cys, cysteine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; GLDH, glutamate dehydrogenase; BSP, sulfobromophthalein clearance; GRP78, 78-kDa glucose regulated protein; CHOP, C/EBP homologous protein; ER, endoplasmic reticulum; PERK, PKR-like ER kinase; AMPK, AMP-activated protein kinase; EPO, erythropoietin; apo C‐III, apolipoprotein C‐III; Gluc, glucagon; DA, dopamine; IGF-1, insulin-like growth factor; AKT, protein kinase; EGF, epidermal growth factor; NGF, nerve growth factor; SP, substance P; hrHGF, human recombinant hepatocyte growth factor; SEC, sinusoidal endothelial cells; MDA, malonyldialdehyde; MPO, myeloperoxidase; RLX, relaxin; HMP, hypothermic machine preservation; PGE-1, prostaglandin E-1; FK506, tacrolimus hydrate.