Table of Contents Author Guidelines Submit a Manuscript
Behavioural Neurology
Volume 2014, Article ID 897282, 6 pages
http://dx.doi.org/10.1155/2014/897282
Review Article

Quantitative Evaluation of the Use of Actigraphy for Neurological and Psychiatric Disorders

1Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
2Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
3Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
4Department of Neurology, Kansai University Clinic, Kansai University of Health Sciences, Osaka 590-0482, Japan
5Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan

Received 3 April 2014; Revised 26 July 2014; Accepted 7 August 2014; Published 19 August 2014

Academic Editor: Mario Zappia

Copyright © 2014 Weidong Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Pan, K. Ohashi, Y. Yamamoto, and S. Kwak, “Power-law temporal autocorrelation of activity reflects severity of parkinsonism,” Movement Disorders, vol. 22, no. 9, pp. 1308–1313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Li, J. Liu, S. Li, Y. C. Wang, and P. Zhou, “Examination of hand muscle activation and motor unit indices derived from surface EMG in chronic stroke,” IEEE Transactions on Biomedical Engineering, no. 99, p. 1, 2014. View at Publisher · View at Google Scholar
  3. S. Abbate, M. Avvenuti, and J. Light, “Usability study of a wireless monitoring system among Alzheimer's disease elderly population,” International Journal of Telemedicine and Applications, vol. 2014, Article ID 617495, 8 pages, 2014. View at Publisher · View at Google Scholar
  4. F. Alonge, E. Cucco, F. D'Ippolito, and A. Pulizzotto, “The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis,” Sensors, vol. 14, no. 5, pp. 8430–8446, 2014. View at Google Scholar
  5. P. Gupta and T. Dallas, “Feature selection and activity recognition system using a single triaxial accelerometer,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1780–1786, 2014. View at Publisher · View at Google Scholar
  6. E. J. W. van Someren, M. D. Pticek, J. D. Speelman, P. R. Schuurman, R. Esselink, and D. F. Swaab, “New actigraph for long-term tremor recording,” Movement Disorders, vol. 21, no. 8, pp. 1136–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Pan, S. Kwak, F. Li et al., “Actigraphy monitoring of symptoms in patients with Parkinson's disease,” Physiology and Behavior, vol. 119, pp. 156–160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sun, C. Wu, J. Wang, and W. Pan, “Quantitative evaluation of movement disorders by specified analysis according to actigraphy records,” International Journal of Integrative Medicine, vol. 1, article 8, 2013. View at Publisher · View at Google Scholar
  9. G. Jean-Louis, M. V. Mendlowicz, J. C. Gillin et al., “Sleep estimation from wrist activity in patients with major depression,” Physiology & Behavior, vol. 70, no. 1-2, pp. 49–53, 2000. View at Google Scholar
  10. S. W. Lockley, D. J. Skene, and J. Arendt, “Comparison between subjective and actigraphic measurement of sleep and sleep rhythms,” Journal of Sleep Research, vol. 8, no. 3, pp. 175–183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Chin, T. Oga, K. Takahashi et al., “Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan,” Sleep, vol. 33, no. 1, pp. 89–95, 2010. View at Google Scholar · View at Scopus
  12. W. Pan, R. Soma, S. Kwak, and Y. Yamamoto, “Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders,” Journal of Neurology, vol. 255, no. 11, pp. 1657–1661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Pan, S. Yoshida, Q. Liu et al., “Quantitative evaluation of severity of behavioral and psychological symptoms of dementia in patients with vascular dementia,” Translational Neurodegeneration, vol. 2, article 9, 2013. View at Publisher · View at Google Scholar
  14. S. Katayama, “Actigraph analysis of diurnal motor fluctuations during dopamine agonist therapy,” European Neurology, vol. 46, no. 1, pp. 11–17, 2001. View at Google Scholar · View at Scopus
  15. J. Y. Matsumoto, D. W. Dodick, L. N. Stevens, R. C. Newman, P. E. Caskey, and W. Fjerstad, “Three-dimensional measurement of essential tremor,” Movement Disorders, vol. 14, no. 2, pp. 288–294, 1999. View at Google Scholar
  16. W. Pan, Y. Liu, Z. Fang et al., “A compound belonging to traditional Chinese medicine improves nocturnal activity in Parkinson's disease,” Sleep Medicine, vol. 12, no. 3, pp. 307–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Pan, S. Kwak, G. Li et al., “Therapeutic effect of Yang-Xue-Qing-Nao granules on sleep dysfunction in Parkinson’s disease,” Chinese Medicine, vol. 8, no. 14, 2013. View at Publisher · View at Google Scholar
  18. S. Vinzio, A. Ruellan, A. Perrin, J. Schlienger, and B. Goichot, “Actigraphic assessment of the circadian rest-activity rhythm in elderly patients hospitalized in an acute care unit,” Psychiatry and Clinical Neurosciences, vol. 57, no. 1, pp. 53–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. L. Goldberger, L. A. Amaral, L. Glass et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. E215–E220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos, vol. 5, no. 1, pp. 82–87, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Yamamoto, Z. R. Struzik, R. Soma, K. Ohashi, and S. Kwak, “Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders,” Annals of Neurology, vol. 58, no. 2, pp. 175–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. R. Struzik, J. Hayano, R. Soma, S. Kwak, and Y. Yamamoto, “Aging of complex heart rate dynamics,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 1, pp. 89–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kotani, Z. R. Struzik, K. Takamasu, H. E. Stanley, and Y. Yamamoto, “Model for complex heart rate dynamics in health and diseases,” Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, vol. 72, no. 4, Article ID 041904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Ohashi, L. A. N. Amaral, B. H. Natelson, and Y. Yamamoto, “Asymmetrical singularities in real-world signals,” Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 68, no. 6, Article ID 065204, pp. 652041–652044, 2003. View at Google Scholar · View at Scopus
  25. K. Ohashi, A. Polcari, and M. H. Teicher, “Scale-invariant locomotor activity patterns in children with SAD,” International Journal of Integrative Medicine, vol. 1, article 12, 2013. View at Publisher · View at Google Scholar
  26. P. Martinez-Martin, C. Rodriguez-Blazquez, K. Abe et al., “International study on the psychometric attributes of the non-motor symptoms Scale in Parkinson disease,” Neurology, vol. 73, no. 19, pp. 1584–1591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Martinez-Martin, A. Gil-Nagel, L. M. Gracia et al., “Unified Parkinson's disease rating scale characteristics and structure. The cooperative multicentric group,” Movement Disorders, vol. 9, pp. 76–83, 1994. View at Google Scholar
  28. C. L. Comella, M. Morrissey, and K. Janko, “Nocturnal activity with nighttime pergolide in Parkinson disease: a controlled study using actigraphy,” Neurology, vol. 64, no. 8, pp. 1450–1451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Pan, S. Kwak, Y. Liu et al., “Traditional chinese medicine improves activities of daily living in parkinson's disease,” Parkinson's Disease, vol. 2011, Article ID 789506, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Pan and H. Zhou, “Inclusion of integrative medicine in clinical practice,” Integrative Medicine International, vol. 1, pp. 1–4, 2014. View at Publisher · View at Google Scholar
  31. C. Qi, X. Song, J. Wang, B. Qin, W. Pan, and X. Su, “Bufei Huoxue capsules improve sleep disorders in geriatric chronic obstructive pulmonary disease,” Shang Hai Zhong Yi Yao Da Xue Xue Bao, vol. 47, no. 8, pp. 35–38, 2013. View at Google Scholar
  32. L. Jiang and X. Wu, “Research on the relationship between sleep phases and heart rate variability,” Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol. 28, no. 1, pp. 148–152, 2011. View at Google Scholar · View at Scopus
  33. J. M. Lee, D. J. Kim, I. Y. Kim, K. Park, and S. I. Kim, “Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data,” Computers in Biology and Medicine, vol. 32, no. 1, pp. 37–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. L. N. Bakken, H. S. Kim, A. Finset, and A. Lerdal, “Stroke patients' functions in personal activities of daily living in relation to sleep and socio-demographic and clinical variables in the acute phase after first-time stroke and at six months of follow-up,” Journal of Clinical Nursing, vol. 21, no. 13-14, pp. 1886–1895, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Nakamura, K. Kiyono, K. Yoshiuchi, R. Nakahara, Z. R. Struzik, and Y. Yamamoto, “Universal scaling law in human behavioral organization,” Physical Review Letters, vol. 99, no. 13, Article ID 138103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Mahlberg and S. Walther, “Actigraphy in agitated patients with dementia: monitoring treatment outcomes,” Zeitschrift fur Gerontologie und Geriatrie, vol. 40, no. 3, pp. 178–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Mahlberg, S. Walther, U. Eichmann, F. Tracik, and D. Kunz, “Effects of rivastigmine on actigraphically monitored motor activity in severe agitation related to Alzheimer's disease: a placebo-controlled pilot study,” Archives of Gerontology and Geriatrics, vol. 45, no. 1, pp. 19–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Hu, E. J. W. Van Someren, S. A. Shea, and F. A. J. L. Scheer, “Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2490–2494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Kim, T. Nakamura, H. Kikuchi, T. Sasaki, and Y. Yamamoto, “Co-variation of depressive mood and locomotor dynamics evaluated by ecological momentary assessment in healthy humans,” PLoS ONE, vol. 8, no. 9, Article ID e74979, 2013. View at Google Scholar