Table of Contents Author Guidelines Submit a Manuscript
Behavioural Neurology
Volume 2015, Article ID 469508, 12 pages
http://dx.doi.org/10.1155/2015/469508
Review Article

The Mismatch Negativity: An Indicator of Perception of Regularities in Music

Department of Psychology, Sun Yat-Sen University, No. 135 Xingang Xi Road, Guangzhou 510275, China

Received 24 April 2015; Revised 23 July 2015; Accepted 26 July 2015

Academic Editor: Stefan Evers

Copyright © 2015 Xide Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Spohn, “Programming the basic materials of music for self-instructional development of aural skills,” Journal of Research in Music Education, vol. 11, no. 2, pp. 91–98, 1963. View at Publisher · View at Google Scholar
  2. S. F. Michalski Jr., “Development and evaluation of a visual-aural program in conceptual understanding of the basic elements of music,” Journal of Research in Music Education, vol. 19, no. 1, pp. 92–97, 1971. View at Google Scholar
  3. E. G. Schellenberg, “Music and cognitive abilities,” Current Directions in Psychological Science, vol. 14, no. 6, pp. 317–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Feld and A. A. Fox, “Music and language,” Annual Review of Anthropology, vol. 23, no. 1, pp. 25–53, 1994. View at Publisher · View at Google Scholar
  5. W. J. Dowling and B. Tillmann, “Memory improvement while hearing music: effects of structural continuity on feature binding,” Music Perception, vol. 32, no. 1, pp. 11–32, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Hargreaves and A. C. North, “The functions of music in everyday life: redefining the social in music psychology,” Psychology of Music, vol. 27, no. 1, pp. 71–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Sambandham and V. Schirm, “Music as a nursing intervention for residents with Alzheimer's disease in long-term care. Music may be a memory trigger for patients with Alzheimer's and provide a means of communication,” Geriatric Nursing, vol. 16, no. 2, pp. 79–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Brotons and P. K. Pickett-Cooper, “The effects of music therapy intervention on agitation behaviors of Alzheimer's Disease Patients,” Journal of Music Therapy, vol. 33, no. 1, pp. 2–18, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Kumar, F. Tims, D. G. Cruess et al., “Music therapy increases serum melatonin levels in patients with Alzheimer's disease,” Alternative Therapies in Health and Medicine, vol. 5, no. 6, pp. 49–57, 1999. View at Google Scholar · View at Scopus
  10. L. L. Cuddy and J. Duffin, “Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed?” Medical Hypotheses, vol. 64, no. 2, pp. 229–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Moussard, E. Bigand, S. Belleville, and I. Peretz, “Music as an aid to learn new verbal information in Alzheimer's disease,” Music Perception, vol. 29, no. 5, pp. 521–531, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. Deason, N. R. Simmons-Stern, B. S. Frustace, B. A. Ally, and A. E. Budson, “Music as a memory enhancer: differences between healthy older adults and patients with Alzheimer's disease,” Psychomusicology: Music, Mind, and Brain, vol. 22, no. 2, pp. 175–179, 2012. View at Publisher · View at Google Scholar
  13. C. Pacchetti, F. Mancini, R. Aglieri, C. Fundaró, E. Martignoni, and G. Nappi, “Active music therapy in Parkinson's disease: an integrative method for motor and emotional rehabilitation,” Psychosomatic Medicine, vol. 62, no. 3, pp. 386–393, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. Hardy and A. B. LaGasse, “Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism,” Frontiers in Integrative Neuroscience, vol. 19, no. 7, pp. 19–23, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Hegde, “Music-based cognitive remediation therapy for patients with traumatic brain injury,” Frontiers in Neurology, vol. 5, no. 34, pp. 1–7, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Besson, F. Faïta, and J. Requin, “Brain waves associated with musical incongruities differ for musicians and non-musicians,” Neuroscience Letters, vol. 168, no. 1-2, pp. 101–105, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. A. R. Damasio and H. Damasio, “Musical faculty and cerebral dominance,” in Music and the Brain, M. Critchley and R. A. Henson, Eds., pp. 141–155, Camelot Press, Southampton, UK, 1978. View at Google Scholar
  18. M. Tervaniemi, T. Ilvonen, K. Karma, K. Alho, and R. Näätänen, “The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects,” Neuroscience Letters, vol. 226, no. 1, pp. 1–4, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Näätänen, P. Paavilainen, K. Alho, K. Reinikainen, and M. Sams, “The mismatch negativity to intensity changes in an auditory stimulus sequence,” Electroencephalography and Clinical Neurophysiology, vol. 40, pp. 125–131, 1987. View at Google Scholar · View at Scopus
  20. R. Hari, M. Hämäläinen, R. Ilmoniemi et al., “Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man,” Neuroscience Letters, vol. 50, no. 1–3, pp. 127–132, 1984. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Alho, M. Huotilainen, H. Tiitinen, R. J. Ilmoniemi, J. Knuutila, and R. Naatanen, “Memory-related processing of complex sound patterns in human auditory cortex: a MEG study,” NeuroReport, vol. 4, no. 4, pp. 391–394, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shalgi and L. Y. Deouell, “Direct evidence for differential roles of temporal and frontal components of auditory change detection,” Neuropsychologia, vol. 45, no. 8, pp. 1878–1888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M.-H. Giard, F. Perrin, J. Pernier, and P. Bouchet, “Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study,” Psychophysiology, vol. 27, no. 6, pp. 627–640, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Rinne, K. Alho, R. J. Ilmoniemi, J. Virtanen, and R. Näätänen, “Separate time behaviors of the temporal and frontal mismatch negativity sources,” NeuroImage, vol. 12, no. 1, pp. 14–19, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Näätänen, A. W. K. Gaillard, and S. Mäntysalo, “Early selective-attention effect on evoked potential reinterpreted,” Acta Psychologica, vol. 42, no. 4, pp. 313–329, 1978. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Näätänen, S. Pakarinen, T. Rinne, and R. Takegata, “The mismatch negativity (MMN): towards the optimal paradigm,” Clinical Neurophysiology, vol. 115, no. 1, pp. 140–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Paavilainen, P. Arajärvi, and R. Takegata, “Preattentive detection of nonsalient contingencies between auditory features,” NeuroReport, vol. 18, no. 2, pp. 159–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Vuust, E. Brattico, E. Glerean et al., “New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability,” Cortex, vol. 47, no. 9, pp. 1091–1098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Torppa, E. Salo, T. Makkonen et al., “Cortical processing of musical sounds in children with Cochlear Implants,” Clinical Neurophysiology, vol. 123, no. 10, pp. 1966–1979, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Krumhansl, “Rhythm and pitch in music cognition,” Psychological Bulletin, vol. 126, no. 1, pp. 159–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Christmann, T. Lachmann, and S. Berti, “Earlier timbre processing of instrumental tones compared to equally complex spectrally rotated sounds as revealed by the mismatch negativity,” Neuroscience Letters, vol. 581, pp. 115–119, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. K. N. Goydke, E. Altenmüller, J. Möller, and T. F. Münte, “Changes in emotional tone and instrumental timbre are reflected by the mismatch negativity,” Cognitive Brain Research, vol. 21, no. 3, pp. 351–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Lappe, O. Steinsträter, and C. Pantev, “Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection,” Frontiers in Human Neuroscience, vol. 7, article 260, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. F. L. Bouwer, T. L. Van Zuijen, and H. Honing, “Beat processing is pre-attentive for metrically simple rhythms with clear accents: an ERP study,” PLoS ONE, vol. 9, no. 5, Article ID e97467, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Virtala, M. Huotilainen, E. Partanen, and M. Tervaniemi, “Musicianship facilitates the processing of Western music chords—an ERP and behavioral study,” Neuropsychologia, vol. 61, no. 1, pp. 247–258, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. C. L. Krumhansl and L. L. Cuddy, “A theory of tonal hierarchies in music,” in Music Perception, M. R. Jones, R. Fay, and A. N. Popper, Eds., vol. 36 of Springer Handbook of Auditory Research, pp. 51–87, Springer, New York, NY, USA, 2010. View at Publisher · View at Google Scholar
  37. I. Cross, “Music, cognition, culture, and evolution,” Annals of the New York Academy of Sciences, vol. 930, pp. 28–42, 2001. View at Google Scholar · View at Scopus
  38. E. Brattico, M. Tervaniemi, R. Näätänen, and I. Peretz, “Musical scale properties are automatically processed in the human auditory cortex,” Brain Research, vol. 1117, no. 1, pp. 162–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Matsunaga, K. Yokosawa, and J.-I. Abe, “Magnetoencephalography evidence for different brain subregions serving two musical cultures,” Neuropsychologia, vol. 50, no. 14, pp. 3218–3227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Nan, T. R. Knösche, and A. D. Friederici, “The perception of musical phrase structure: a cross-cultural ERP study,” Brain Research, vol. 1094, no. 1, pp. 179–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Nan, T. R. Knösche, and A. D. Friederici, “Non-musicians' perception of phrase boundaries in music: a cross-cultural ERP study,” Biological Psychology, vol. 82, no. 1, pp. 70–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Nan, T. R. Knösche, S. Zysset, and A. D. Friedend, “Cross-cultural music phrase processing: an fMRI study,” Human Brain Mapping, vol. 29, no. 3, pp. 312–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Koelsch, T. C. Gunter, E. Schröger, M. Tervaniemi, D. Sammler, and A. D. Friederici, “Differentiating ERAN and MMN: an ERP study,” NeuroReport, vol. 12, no. 7, pp. 1385–1389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Peretz and M. Coltheart, “Modularity of music processing,” Nature Neuroscience, vol. 6, no. 7, pp. 688–691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Thönnessen, M. Zvyagintsev, K. C. Harke et al., “Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients. A combined EEG and MEG study,” Biological Psychology, vol. 77, no. 2, pp. 205–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. B. W. Müller, M. Jüptner, W. Jentzen, and S. P. Müller, “Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: a PET study,” NeuroImage, vol. 17, no. 1, pp. 231–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Molholm, A. Martinez, W. Ritter, D. C. Javitt, and J. J. Foxe, “The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators,” Cerebral Cortex, vol. 15, no. 5, pp. 545–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Rosburg, P. Trautner, T. Dietl et al., “Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy,” Brain, vol. 128, no. 4, pp. 819–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. G. M. Bidelman, “Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials,” Journal of Neuroscience Methods, vol. 241, pp. 94–100, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Alho, “Selective attention in auditory processing as reflected by event-related brain potentials,” Psychophysiology, vol. 29, no. 3, pp. 247–263, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Fujioka, L. J. Trainor, B. Ross, R. Kakigi, and C. Pantev, “Musical training enhances automatic encoding of melodic contour and interval structure,” Journal of Cognitive Neuroscience, vol. 16, no. 6, pp. 1010–1021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Näätänen, P. Paavilainen, T. Rinne, and K. Alho, “The mismatch negativity (MMN) in basic research of central auditory processing: a review,” Clinical Neurophysiology, vol. 118, no. 12, pp. 2544–2590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Pakarinen, M. Huotilainen, and R. Näätänen, “The mismatch negativity (MMN) with no standard stimulus,” Clinical Neurophysiology, vol. 121, no. 7, pp. 1043–1050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Brattico, K. J. Pallesen, O. Varyagina et al., “Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study,” Journal of Cognitive Neuroscience, vol. 21, no. 11, pp. 2230–2244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Pantev, B. Ross, T. Fujioka, L. J. Trainor, M. Schulte, and M. Schulz, “Music and learning induced cortical plasticity,” Annals of the New York Academy of Sciences, vol. 999, no. 1, pp. 438–450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Vuust, L. Ostergaard, K. J. Pallesen, C. Bailey, and A. Roepstorff, “Predictive coding of music—brain responses to rhythmic incongruity,” Cortex, vol. 45, no. 1, pp. 80–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Vuust, K. J. Pallesen, C. Bailey et al., “To musicians, the message is in the meter: pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians,” NeuroImage, vol. 24, no. 2, pp. 560–564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Tervaniemi and E. Brattico, “From sounds to music towards understanding the neurocognition of musical sound perception,” Journal of Consciousness Studies, vol. 11, no. 3-4, pp. -27–3, 2004. View at Google Scholar · View at Scopus
  59. S. Koelsch, E. Schröger, and M. Tervaniemi, “Superior pre-attentive auditory processing in musicians,” NeuroReport, vol. 10, no. 6, pp. 1309–1313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Tervaniemi, V. Just, S. Koelsch, A. Widmann, and E. Schröger, “Pitch discrimination accuracy in musicians vs non-musicians: an event-related potential and behavioral study,” Experimental Brain Research, vol. 161, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Brattico, M. Tervaniemi, V. Valimaki, T. van Zuijen, and I. Peretz, “Cortical correlates of acquired deafness to dissonance,” Annals of the New York Academy of Sciences, vol. 999, pp. 158–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Tiitinen, P. May, K. Reinikainen, and R. Näätänen, “Attentive novelty detection in humans is governed by pre-attentive sensory memory,” Nature, vol. 372, no. 6501, pp. 90–92, 1994. View at Publisher · View at Google Scholar · View at Scopus
  63. Y.-S. Lee, P. Janata, C. Frost, M. Hanke, and R. Granger, “Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI,” NeuroImage, vol. 57, no. 1, pp. 293–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Geiser, E. Ziegler, L. Jancke, and M. Meyer, “Early electrophysiological correlates of meter and rhythm processing in music perception,” Cortex, vol. 45, no. 1, pp. 93–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. H. L. Chapin, T. Zanto, K. J. Jantzen, S. J. Kelso, F. Steinberg, and E. W. Large, “Neural responses to complex auditory rhythms: the role of attending,” Frontiers in Psychology, vol. 1, article 224, 18 pages, 2010. View at Publisher · View at Google Scholar
  66. M. Schwartze, K. Rothermich, M. Schmidt-Kassow, and S. A. Kotz, “Temporal regularity effects on pre-attentive and attentive processing of deviance,” Biological Psychology, vol. 87, no. 1, pp. 146–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. W. J. Dowling, “Scale and contour: two components of a theory of memory for melodies,” Psychological Review, vol. 85, no. 4, pp. 341–354, 1978. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Brattico, R. Näätänen, and M. Tervaniemi, “Context effects on pitch perception in musicians and non-musicians: evidence from ERP recordings,” Music Perception, vol. 19, no. 2, pp. 199–222, 2001. View at Publisher · View at Google Scholar
  69. H. Honing, “Without it no music: beat induction as a fundamental musical trait,” Annals of the New York Academy of Sciences, vol. 1252, no. 1, pp. 85–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. A. D. Patel, J. R. Iversen, M. R. Bregman, and I. Schulz, “Experimental evidence for synchronization to a musical beat in a nonhuman animal,” Current Biology, vol. 19, no. 10, pp. 827–830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Zarco, H. Merchant, L. Prado, and J. C. Mendez, “Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3191–3202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. H. J. Honing, H. Merchant, G. P. Háden, L. Prado, and R. Bartolo, “Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat,” PLoS ONE, vol. 7, no. 12, Article ID e51369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. O. Ladinig, H. Honing, G. Háden, and I. Winkler, “Probing attentive and preattentive emergent meter in adult listeners without extensive music training,” Music Perception, vol. 26, no. 4, pp. 377–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Winkler, G. P. Háden, O. Ladinig, I. Sziller, and H. Honing, “Newborn infants detect the beat in music,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2468–2471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. F. L. Bouwer, T. L. van Zuijen, and H. Honing, “Beat processing is pre-attentive for metrically simple rhythms with clear accents: an ERP study,” PLoS ONE, vol. 9, no. 5, Article ID e97467, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Virtala, V. Berg, M. Kivioja et al., “The preattentive processing of major vs. minor chords in the human brain: an event-related potential study,” Neuroscience Letters, vol. 487, no. 3, pp. 406–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Alho, M. Tervaniemi, M. Huotilainen et al., “Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses,” Psychophysiology, vol. 33, no. 4, pp. 369–375, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Vuust, E. Brattico, M. Seppänen, R. Näätänen, and M. Tervaniemi, “The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm,” Neuropsychologia, vol. 50, no. 7, pp. 1432–1443, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Vuust and A. Roepstorff, “Listen up! Polyrhythms in brain and music,” Cognitive Semiotics, vol. 3, pp. 131–159, 2008. View at Google Scholar
  80. T. F. Münte, C. Kohlmetz, W. Nager, and E. Altenmüller, “Superior auditory spatial tuning in conductors,” Nature, vol. 409, no. 6820, p. 580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Nager, C. Kohlmetz, E. Altenmüller, A. Rodriguez-Fornells, and T. F. Münte, “The fate of sounds in conductors' brains: an ERP study,” Cognitive Brain Research, vol. 17, no. 1, pp. 83–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Tervaniemi, “Musicians—same or different,” Annals of the New York Academy of Sciences, vol. 1169, pp. 151–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. L. J. Trainor, R. N. Desjardins, and C. Rockel, “A comparison of contour and interval processing in musicians and nonmusicians using event-related potentials,” Australian Journal of Psychology, vol. 51, no. 3, pp. 147–153, 1999. View at Google Scholar · View at Scopus
  84. C. Drake, A. Penel, and E. Bigand, “Tapping in time with mechanically and expressively performed music,” Music Perception, vol. 18, no. 1, pp. 1–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Rüsseler, E. Altenmüller, W. Nager, C. Kohlmetz, and T. F. Münte, “Event-related brain potentials to sound omissions differ in musicians and non-musicians,” Neuroscience Letters, vol. 308, no. 1, pp. 33–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. T. L. van Zuijen, E. Sussman, I. Winkler, R. Näätänen, and M. Tervaniemi, “Auditory organization of sound sequences by a temporal or numerical regularity—a mismatch negativity study comparing musicians and non-musicians,” Cognitive Brain Research, vol. 23, no. 2-3, pp. 270–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. D. A. Nikjeh, J. J. Lister, and S. A. Frisch, “Hearing of note: an electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians,” Psychophysiology, vol. 45, no. 6, pp. 994–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Vuust, K. J. Pallesen, C. Bailey et al., “To musicians, the message is in the meter: pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians,” NeuroImage, vol. 24, no. 2, pp. 560–564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Seppänen, E. Brattico, and M. Tervaniemi, “Practice strategies of musicians modulate neural processing and the learning of sound-patterns,” Neurobiology of Learning and Memory, vol. 87, no. 2, pp. 236–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Seppänen, J. Hämäläinen, A.-K. Pesonen, and M. Tervaniemi, “Passive sound exposure induces rapid perceptual learning in musicians: event-related potential evidence,” Biological Psychology, vol. 94, no. 2, pp. 341–353, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. S. C. Herholz, B. Boh, and C. Pantev, “Musical training modulates encoding of higher-order regularities in the auditory cortex,” The European Journal of Neuroscience, vol. 34, no. 3, pp. 524–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Schneider, M. Scherg, H. G. Dosch, H. J. Specht, A. Gutschalk, and A. Rupp, “Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians,” Nature Neuroscience, vol. 5, no. 7, pp. 688–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Pantev, R. Oostenveld, A. Engelien, B. Ross, L. E. Roberts, and M. Hoke, “Increased auditory cortical representation in musicians,” Nature, vol. 392, no. 6678, pp. 811–814, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. C. E. James, M. S. Oechslin, D. Van De Ville, C.-A. Hauert, C. Descloux, and F. Lazeyras, “Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks,” Brain Structure and Function, vol. 219, no. 1, pp. 353–366, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Draganova, H. Eswaran, P. Murphy, M. Huotilainen, C. Lowery, and H. Preissl, “Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study,” NeuroImage, vol. 28, no. 2, pp. 354–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Holst, H. Eswaran, C. Lowery, P. Murphy, J. Norton, and H. Preissl, “Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study,” Clinical Neurophysiology, vol. 116, no. 8, pp. 1949–1955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Näätänen, T. Kujala, C. Escera et al., “The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions,” Clinical Neurophysiology, vol. 123, no. 3, pp. 424–458, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Cheour, E. Kushnerenko, R. Čeponiene, V. Fellman, and R. Näätänen, “Electric brain responses obtained from newborn infants to changes in duration in complex harmonic tones,” Developmental Neuropsychology, vol. 22, no. 2, pp. 471–479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. L. J. Trainor, K. Lee, and D. J. Bosnyak, “Cortical plasticity in 4-month-old infants: specific effects of experience with musical timbres,” Brain Topography, vol. 24, no. 3-4, pp. 192–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. C. François, J. Chobert, M. Bsson, and D. Schön, “Music training for the development of speech segmentation,” Cerebral Cortex, vol. 23, no. 9, pp. 2038–2043, 2013. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Putkinen and K. Saarikivi, “Do informal musical activities shape auditory skill development in preschool-age children?” Frontiers in Psychology, vol. 4, article 572, 6 pages, 2013. View at Publisher · View at Google Scholar
  102. K. I. Krohn, E. Brattico, V. Välimäki, and M. Tervaniemi, “Neural representations of the hierarchical scale pitch structure,” Music Perception, vol. 24, no. 3, pp. 281–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Cheour, P. H.t. Leppänen, and N. Kraus, “Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children,” Clinical Neurophysiology, vol. 111, no. 1, pp. 4–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. W. T. Fitch and M. D. Martins, “Hierarchical processing in music, language, and action: lashley revisited,” Annals of the New York Academy of Sciences, vol. 1316, no. 1, pp. 87–104, 2014. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Koelsch, “Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN,” Psychophysiology, vol. 46, no. 1, pp. 179–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Driemeyer, J. Boyke, C. Gaser, C. Büchel, A. May, and D. M. Eagleman, “Changes in gray matter induced by learning—revisited,” PLoS ONE, vol. 3, no. 7, Article ID e2669, 2008. View at Publisher · View at Google Scholar
  107. S. J. Morrison, S. M. Demorest, E. H. Aylward, S. C. Cramer, and K. R. Maravilla, “fMRI investigation of cross-cultural music comprehension,” NeuroImage, vol. 20, no. 1, pp. 378–384, 2003. View at Publisher · View at Google Scholar · View at Scopus