Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2011 (2011), Article ID 721463, 13 pages
http://dx.doi.org/10.1155/2011/721463
Review Article

Zinc Metalloproteinases and Amyloid Beta-Peptide Metabolism: The Positive Side of Proteolysis in Alzheimer's Disease

Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK

Received 17 August 2010; Accepted 7 September 2010

Academic Editor: Simon J. Morley

Copyright © 2011 Mallory Gough et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Schorer, “Historical essay: Kraepelin's description of Alzheimer's disease,” International Journal of Aging & Human Development, vol. 21, no. 3, pp. 235–238, 1985. View at Google Scholar · View at Scopus
  2. C. Duyckaerts, B. Delatour, and M.-C. Potier, “Classification and basic pathology of Alzheimer disease,” Acta Neuropathologica, vol. 118, no. 1, pp. 5–36, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. R. Medeiros, D. Baglietto-Vargas, and F. M. Laferla, “The role of tau in Alzheimer's disease and related disorders,” CNS Neuroscience & Therapeutics. In press.
  4. B. de Strooper, “Proteases and proteolysis in alzheimer disease: a multifactorial view on the disease process,” Physiological Reviews, vol. 90, no. 2, pp. 465–494, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. S. W. Pimplikar, “Reassessing the amyloid cascade hypothesis of Alzheimer's disease,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 6, pp. 1261–1268, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. P. Lambert, A. K. Barlow, and A. K. Barlow, “Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6448–6453, 1998. View at Google Scholar · View at Scopus
  7. D. M. Walsh, D. M. Hartley, and D. M. Hartley, “Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates,” Journal of Biological Chemistry, vol. 274, no. 36, pp. 25945–25952, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Google Scholar · View at Scopus
  9. M. P. Mattson, “Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives,” Physiological Reviews, vol. 77, no. 4, pp. 1081–1132, 1997. View at Google Scholar · View at Scopus
  10. N. M. Hooper, A. J. Trew, E. T. Parkin, and A. J. Turner, “The role of proteolysis in Alzheimer's disease,” Advances in Experimental Medicine and Biology, vol. 477, pp. 379–390, 2000. View at Google Scholar · View at Scopus
  11. C. Haass, “Take five—BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation,” EMBO Journal, vol. 23, no. 3, pp. 483–488, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. M. J. Allinson, E. T. Parkin, A. J. Turner, and N. M. Hooper, “ADAMs family members as amyloid precursor protein α-secretases,” Journal of Neuroscience Research, vol. 74, no. 3, pp. 342–352, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Wang, J. F. Meschia, R. J. Cotter, and S. S. Sisodia, “Secretion of the β/A4 amyloid precursor protein: identification of a cleavage site in cultured mammalian cells,” Journal of Biological Chemistry, vol. 266, no. 25, pp. 16960–16964, 1991. View at Google Scholar · View at Scopus
  14. D. M. Skovronsky, D. B. Moore, M. E. Milla, R. W. Doms, and V. M.-Y. Lee, “Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network,” Journal of Biological Chemistry, vol. 275, no. 4, pp. 2568–2575, 2000. View at Publisher · View at Google Scholar
  15. R. Postina, A. Schroeder, and A. Schroeder, “A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model,” Journal of Clinical Investigation, vol. 113, no. 4, pp. 1456–1464, 2004. View at Publisher · View at Google Scholar
  16. I. Caillé, B. Allinquant, E. Dupont, C. Bouillot, A. Langer, U. Müller, and A. Prochiantz, “Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone,” Development, vol. 131, no. 9, pp. 2173–2181, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. U. Pietrzik, J. Hoffmann, and J. Hoffmann, “From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1770–1775, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Saitoh, M. Sundsmo, and M. Sundsmo, “Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts,” Cell, vol. 58, no. 4, pp. 615–622, 1989. View at Google Scholar · View at Scopus
  19. E. A. Milward, R. Papadopoulos, S. J. Fuller, R. D. Moir, D. Small, K. Beyreuther, and C. L. Masters, “The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth,” Neuron, vol. 9, no. 1, pp. 129–137, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Furukawa, B. L. Sopher, and B. L. Sopher, “Increased activity-regulating and neuroprotective efficacy of α- secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain,” Journal of Neurochemistry, vol. 67, no. 5, pp. 1882–1896, 1996. View at Google Scholar · View at Scopus
  21. M. P. Mattson, B. Cheng, A. R. Culwell, F. S. Esch, I. Lieberburg, and R. E. Rydel, “Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein,” Neuron, vol. 10, no. 2, pp. 243–254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Morimoto, “Novel domain-specific actions of amyloid precursor protein on developing synapses,” Journal of Neuroscience, vol. 18, no. 22, pp. 9386–9393, 1998. View at Google Scholar
  23. V. L. Smith-Swintosky, L. C. Pettigrew, S. D. Craddock, A. R. Culwell, R. E. Rydel, and M. P. Mattson, “Secreted forms of β-amyloid precursor protein protect against ischemic brain injury,” Journal of Neurochemistry, vol. 63, no. 2, pp. 781–784, 1994. View at Google Scholar · View at Scopus
  24. E. Thornton, R. Vink, P. C. Blumbergs, and C. van den Heuvel, “Soluble amyloid precursor protein α reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats,” Brain Research, vol. 1094, no. 1, pp. 38–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. H. Meziane, J.-C. Dodart, C. Mathis, S. Little, J. Clemens, S. M. Paul, and A. Ungerer, “Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12683–12688, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ring, S. Weyer, S. W. Kilian et al., “The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice,” Journal of Neuroscience, vol. 27, pp. 7817–7826, 2007. View at Google Scholar
  27. S. B. Roberts, J. A. Ripellino, K. M. Ingalls, N. K. Robakis, and K. M. Felsenstein, “Non-amyloidogenic cleavage of the β-amyloid precursor protein by an integral membrane metalloendopeptidase,” Journal of Biological Chemistry, vol. 269, no. 4, pp. 3111–3116, 1994. View at Google Scholar · View at Scopus
  28. S. S. Sisodia, “β-Amyloid precursor protein cleavage by a membrane-bound protease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 6075–6079, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Arribas, L. Coodly, P. Vollmer, T. K. Kishimoto, S. Rose-John, and J. Massaguè, “Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors,” Journal of Biological Chemistry, vol. 271, no. 19, pp. 11376–11382, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Parvathy, I. Hussain, E. H. Karran, A. J. Turner, and N. M. Hooper, “Alzheimer's amyloid precursor protein α-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase,” Biochemistry, vol. 37, no. 6, pp. 1680–1685, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Racchi, D. C. Solano, M. Sironi, and S. Govoni, “Activity of α-secretase as the common final effector of protein kinase C-dependent and -independent modulation of amyloid precursor protein metabolism,” Journal of Neurochemistry, vol. 72, no. 6, pp. 2464–2470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. E. T. Parkin, N. T. Watt, A. J. Turner, and N. M. Hooper, “Dual Mechanisms for Shedding of the Cellular Prion Protein,” Journal of Biological Chemistry, vol. 279, no. 12, pp. 11170–11178, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. D. R. Taylor, E. T. Parkin, S. L. Cocklin, J. R. Ault, A. E. Aschcroft, A. J. Turner, and N. M. Hooper, “Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein,” Journal of Biological Chemistry, vol. 284, no. 34, pp. 22590–22600, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. K. Reiss and P. Saftig, “The "A Disintegrin And Metalloprotease" (ADAM) family of sheddases: physiological and cellular functions,” Seminars in Cell and Developmental Biology, vol. 20, no. 2, pp. 126–137, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. Anders, S. Gilbert, W. Garten, R. Postina, and F. Fahrenholz, “Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases,” The FASEB Journal, vol. 15, no. 10, pp. 1837–1839, 2001. View at Google Scholar · View at Scopus
  36. F. Loechel and U. M. Wewer, “Activation of ADAM 12 protease by copper,” FEBS Letters, vol. 506, no. 1, pp. 65–68, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. E. M. Hwang, S.-K. Kim, J.-H. Sohn, J. Y. Lee, Y. Kim, Y. S. Kim, and I. Mook-Jung, “Furin is an endogenous regulator of α-secretase associated APP processing,” Biochemical and Biophysical Research Communications, vol. 349, no. 2, pp. 654–659, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. E. Lopez-Perez, Y. Zhang, S. J. Frank, J. Creemers, N. Seidah, and F. Checler, “Constitutive alpha-secretase cleavage of the beta-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the pro-hormone convertase 7 and the disintegrin metalloprotease ADAM10,” Journal of Neurochemistry, vol. 76, pp. 1532–1539, 2001. View at Google Scholar
  39. M. E. Milla, P. E. Gonzales, and J. D. Leonard, “The TACE zymogen: re-examining the role of the cysteine switch,” Cell Biochemistry and Biophysics, vol. 44, no. 3, pp. 342–348, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Cal, J. M. P. Freije, J. M. López, Y. Takada, and C. López-Otín, “ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the αvβ3 integrin through an RGD-independent mechanism,” Molecular Biology of the Cell, vol. 11, no. 4, pp. 1457–1469, 2000. View at Google Scholar · View at Scopus
  41. A. Gaultier, H. Cousin, T. Darribère, and D. Alfandari, “ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin,” Journal of Biological Chemistry, vol. 277, no. 26, pp. 23336–23344, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. C. K. Thodeti, C. Fröhlich, C. K. Nielsen, Y. Takada, R. Fässler, R. Albrechtsen, and U. M. Wewer, “ADAM12-mediated focal adhesion formation is differently regulated by β1 and β3 integrins,” FEBS Letters, vol. 579, no. 25, pp. 5589–5595, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. Z. Zhao, J. Gruszczynska-Biegala, and J. Gruszczynska-Biegala, “Interaction of the disintegrin and cysteine-rich domains of ADAM12 with integrin α7β1,” Experimental Cell Research, vol. 298, no. 1, pp. 28–37, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. P. Zigrino, J. Steiger, J. W. Fox, S. Löffek, A. Schild, R. Nischt, and C. Mauch, “Role of ADAM-9 disintegrin-cysteine-rich domains in human keratinocyte migration,” Journal of Biological Chemistry, vol. 282, no. 42, pp. 30785–30793, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Zolkiewska, “Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain,” Experimental Cell Research, vol. 252, no. 2, pp. 423–431, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. White, L. Bridges, D. DeSimone, M. Tomczuk, and T. Wolfsberf, Introduction to the ADAM Family, vol. 4, Springer, Dordrecht, The Netherlands, 2005.
  47. A. Chantry, N. A. Gregson, and P. Glynn, “A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization,” Journal of Biological Chemistry, vol. 264, no. 36, pp. 21603–21607, 1989. View at Google Scholar · View at Scopus
  48. A. Chantry, N. Gregson, and P. Glynn, “Degradation of myelin basic protein by a membrane-associated metalloprotease: neural distribution of the enzyme,” Neurochemical Research, vol. 17, no. 9, pp. 861–868, 1992. View at Publisher · View at Google Scholar · View at Scopus
  49. M. L. Moss, M. Bomar, and M. Bomar, “The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events,” Journal of Biological Chemistry, vol. 282, no. 49, pp. 35712–35721, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. Escrevente, V. A. Morais, S. Keller, C. M. Soares, P. Altevogt, and J. Costa, “Functional role of N-glycosylation from ADAM10 in processing, localization and activity of the enzyme,” Biochimica et Biophysica Acta, vol. 1780, no. 6, pp. 905–913, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. K. Yamazaki, Y. Mizui, K. Sagane, and I. Tanaka, “Assignment of a disintegrin and metalloproteinase domain 10 (Adam10) gene to mouse chromosome 9,” Genomics, vol. 46, no. 3, pp. 528–529, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Yamazaki, Y. Mizui, and I. Tanaka, “Radiation hybrid mapping of human ADAM10 gene to chromosome 15,” Genomics, vol. 45, no. 2, pp. 457–459, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. C. Prinzen, U. Müller, K. Endres, F. Fahrenholz, and R. Postina, “Genomic structure and functional characterization of the human ADAM10 promoter,” FASEB Journal, vol. 19, no. 11, pp. 1522–1524, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. F. Tippmann, J. Hundt, A. Schneider, K. Endres, and F. Fahrenholz, “Up-regulation of the α-secretase ADAM10 by retinoic acid receptors and acitretin,” FASEB Journal, vol. 23, no. 6, pp. 1643–1654, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. Donmez, D. Wang, D. E. Cohen, and L. Guarente, “SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10,” Cell, vol. 142, pp. 320–332, 2010. View at Google Scholar
  56. A.-P. J. Huovila, A. J. Turner, M. Pelto-Huikko, I. Kärkkäinen, and R. M. Ortiz, “Shedding light on ADAM metalloproteinases,” Trends in Biochemical Sciences, vol. 30, no. 7, pp. 413–422, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. Lammich, E. Kojro, and E. Kojro, “Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3922–3927, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Hendriks, C. M. Van Duijn, and C. M. Van Duijn, “Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene,” Nature Genetics, vol. 1, no. 3, pp. 218–221, 1992. View at Google Scholar · View at Scopus
  59. A. Amour, C. G. Knight, and C. G. Knight, “The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3,” FEBS Letters, vol. 473, no. 3, pp. 275–279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Hartmann, B. De Strooper, and B. De Strooper, “The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts,” Human Molecular Genetics, vol. 11, no. 21, pp. 2615–2624, 2002. View at Google Scholar · View at Scopus
  61. D. F. Obregon, K. Rezai-Zadeh, and K. Rezai-Zadeh, “ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate- induced α-secretase cleavage of amyloid precursor protein,” Journal of Biological Chemistry, vol. 281, no. 24, pp. 16419–16427, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Zimmermann, F. Gardoni, and F. Gardoni, “Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines,” Journal of Neurochemistry, vol. 90, no. 6, pp. 1489–1499, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. E. Marcello, F. Gardoni, and F. Gardoni, “Synapse-associated protein-97 mediates α-secretase ADAM10 trafficking and promotes its activity,” Journal of Neuroscience, vol. 27, no. 7, pp. 1682–1691, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. E. Marcello, F. Gardoni, M. Di Luca, and I. Pérez-Otan, “An arginine stretch limits ADAM10 exit from the endoplasmic reticulum,” Journal of Biological Chemistry, vol. 285, no. 14, pp. 10376–10384, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. R. A. Black, C. T. Rauch, and C. T. Rauch, “A metalloproteinase disintegrin that releases tumour-necrosis factor- from cells,” Nature, vol. 385, no. 6618, pp. 729–733, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. L. Moss, S.-L. C. Jin, and S.-L. C. Jin, “Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α,” Nature, vol. 385, pp. 733–736, 1997. View at Google Scholar
  67. K. Maskos, C. Fernandez-Catalan, and C. Fernandez-Catalan, “Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3408–3412, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Pruessmeyer and A. Ludwig, “The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer,” Seminars in Cell and Developmental Biology, vol. 20, no. 2, pp. 164–174, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. J. D. Buxbaum, M. Oishi, H. I. Chen, R. Pinkas-Kramarski, E. A. Jaffe, S. E. Gandy, and P. Greengard, “Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10075–10078, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Merlos-Suárez, J. Fernández-Larrea, P. Reddy, J. Baselga, and J. Arribas, “Pro-tumor necrosis factor-α processing activity is tightly controlled by a component that does not affect Notch processing,” Journal of Biological Chemistry, vol. 273, no. 38, pp. 24955–24962, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Blacker, M. C. Noe, T. J. Carty, C. G. Goodyer, and A. C. LeBlanc, “Effect of tumor necrosis factor-α converting enzyme (TACE) and metalloprotease inhibitor on amyloid precursor protein metabolism in human neurons,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1349–1357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. P. H. Kuhn, H. Wang, B. Dislich et al., “ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons,” EMBO Journal, vol. 29, no. 17, pp. 3020–3032, 2010. View at Publisher · View at Google Scholar · View at PubMed
  73. B. E. Slack, L. K. Ma, and C. C. Seah, “Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-α converting enzyme,” Biochemical Journal, vol. 357, no. 3, pp. 787–794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Hiraoka, M. Ohno, K. Yoshida, K. Okawa, H. Tomimoto, T. Kita, and E. Nishi, “Enhancement of α-secretase cleavage of amyloid precursor protein by a metalloendopeptidase nardilysin,” Journal of Neurochemistry, vol. 102, no. 5, pp. 1595–1605, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. M. Asai, C. Hattori, B. Szabó, N. Sasagawa, K. Maruyama, S.-I. Tanuma, and S. Ishiura, “Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase,” Biochemical and Biophysical Research Communications, vol. 301, no. 1, pp. 231–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. D. Buxbaum, K.-N. Liu, and K.-N. Liu, “Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 27765–27767, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. M. J. Mohan, T. Seaton, and T. Seaton, “The tumor necrosis factor-α converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity,” Biochemistry, vol. 41, no. 30, pp. 9462–9469, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Weskamp, J. Krätzschmar, M. S. Reid, and C. P. Blobel, “MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains,” Journal of Cell Biology, vol. 132, no. 4, pp. 717–726, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Koike, S. Tomioka, and S. Tomioka, “Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein,” Biochemical Journal, vol. 343, part 2, pp. 371–375, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Roghani, J. D. Becherer, and J. D. Becherer, “Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3531–3540, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Hotoda, H. Koike, N. Sasagawa, and S. Ishiura, “A secreted form of human ADAM9 has an α-secretase activity for APP,” Biochemical and Biophysical Research Communications, vol. 293, no. 2, pp. 800–805, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. L. Cong and J. Jia, “Promoter polymorphisms which regulate ADAM9 transcription are protective against sporadic Alzheimer's disease,” Neurobiology of Aging. In press. View at Publisher · View at Google Scholar · View at PubMed
  83. M. A. Cissé, C. Sunyach, S. Lefranc-Jullien, R. Postina, B. Vincent, and F. Checler, “The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40624–40631, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. B. Harris, I. Pereira, and E. Parkin, “Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein,” Brain Research, vol. 1296, pp. 203–215, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. T. Tousseyn, A. Thathiah, and A. Thathiah, “ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the γ-secretase,” Journal of Biological Chemistry, vol. 284, no. 17, pp. 11738–11747, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. J. Zou, F. Zhu, and F. Zhu, “Catalytic activity of human ADAM33,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 9818–9830, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. Naus, S. Reipschläger, and S. Reipschläger, “Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8,” Biological Chemistry, vol. 387, no. 3, pp. 337–346, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. C. Tanabe, N. Hotoda, N. Sasagawa, A. Sehara-Fujisawa, K. Maruyama, and S. Ishiura, “ADAM19 is tightly associated with constitutive Alzheimer's disease APP α-secretase in A172 cells,” Biochemical and Biophysical Research Communications, vol. 352, no. 1, pp. 111–117, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. N. M. Hooper, “Families of zinc metalloproteases,” FEBS Letters, vol. 354, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Ohno, Y. Hiraoka, and Y. Hiraoka, “Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system,” Nature Neuroscience, vol. 12, no. 12, pp. 1506–1513, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. E. Malito, R. E. Hulse, and W.-J. Tang, “Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin,” Cellular and Molecular Life Sciences, vol. 65, no. 16, pp. 2574–2585, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. A. Fernández-Gamba, M. C. Leal, L. Morelli, and E. M. Castaño, “Insulin-degrading enzyme: structure-function relationship and its possible roles in health and disease,” Current Pharmaceutical Design, vol. 15, no. 31, pp. 3644–3655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Vekrellis, Z. Ye, and Z. Ye, “Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme,” Journal of Neuroscience, vol. 20, no. 5, pp. 1657–1665, 2000. View at Google Scholar · View at Scopus
  94. W. Farris, S. Mansourian, and S. Mansourian, “Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4162–4167, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. W. Farris, S. Mansourian, and S. Mansourian, “Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid β-Protein,” American Journal of Pathology, vol. 164, no. 4, pp. 1425–1434, 2004. View at Google Scholar · View at Scopus
  96. M. A. Leissring, W. Farris, and W. Farris, “Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death,” Neuron, vol. 40, no. 6, pp. 1087–1093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. B. C. Miller, E. A. Eckman, and E. A. Eckman, “Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6221–6226, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. C. Venugopal, M. A. Pappolla, and K. Sambamurti, “Insulysin cleaves the APP cytoplasmic fragment at multiple sites,” Neurochemical Research, vol. 32, no. 12, pp. 2225–2234, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. H.-G. Bernstein, S. Ansorge, P. Riederer, M. Reiser, L. Frölich, and B. Bogerts, “Insulin-degrading enzyme in the Alzheimer's disease brain: prominent localization in neurons and senile plaques,” Neuroscience Letters, vol. 263, no. 2-3, pp. 161–164, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Morelli, R. E. Llovera, I. Mathov, L.-F. Lue, B. Frangione, J. Ghiso, and E. M. Castaño, “Insulin-degrading enzyme in brain microvessels: proteolysis of amyloid β vasculotropic variants and reduced activity in cerebral amyloid angiopathy,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 56004–56013, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. Z. Zhao, Z. Xiang, V. Haroutunian, J. D. Buxbaum, B. Stetka, and G. M. Pasinetti, “Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease,” Neurobiology of Aging, vol. 28, no. 6, pp. 824–830, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. J. A. Prince, L. Feuk, H. F. Gu, B. Johansson, M. Gatz, K. Blennow, and A. J. Brookes, “Genetic variation in a haplotype block spanning IDE influences Alzheimer disease,” Human Mutation, vol. 22, no. 5, pp. 363–371, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. Kim, L. B. Hersh, and L. B. Hersh, “Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families,” Journal of Biological Chemistry, vol. 282, no. 11, pp. 7825–7832, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. B. P. Roques, F. Noble, V. Dauge, M.-C. Fournie-Zaluski, and A. Beaumont, “Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology,” Pharmacological Reviews, vol. 45, no. 1, pp. 87–146, 1993. View at Google Scholar · View at Scopus
  105. S. Howell, J. Nalbantoglu, and P. Crine, “Neutral endopeptidase can hydrolyze β-amyloid(1-40) but shows no effect on β-amyloid precursor protein metabolism,” Peptides, vol. 16, no. 4, pp. 647–652, 1995. View at Publisher · View at Google Scholar
  106. N. Iwata, S. Tsubuki, and S. Tsubuki, “Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition,” Nature Medicine, vol. 6, no. 2, pp. 143–150, 2000. View at Publisher · View at Google Scholar · View at PubMed
  107. N. Iwata, S. Tsubuki, and S. Tsubuki, “Metabolic regulation of brain Aβ by neprilysin,” Science, vol. 292, no. 5521, pp. 1550–1552, 2001. View at Publisher · View at Google Scholar · View at PubMed
  108. S.-M. Huang, A. Mouri, and A. Mouri, “Neprilysin-sensitive synapse-associated amyloid-β peptide oligomers impair neuronal plasticity and cognitive function,” Journal of Biological Chemistry, vol. 281, no. 26, pp. 17941–17951, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. H. Akiyama, H. Kondo, K. Ikeda, M. Kato, and P. L. McGeer, “Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid β-protein (Aβ) deposition,” Brain Research, vol. 902, no. 2, pp. 277–281, 2001. View at Publisher · View at Google Scholar
  110. K. Yasojima, H. Akiyama, E. G. McGeer, and P. L. McGeer, “Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide,” Neuroscience Letters, vol. 297, no. 2, pp. 97–100, 2001. View at Publisher · View at Google Scholar
  111. E. Hellström-Lindahl, R. Ravid, and A. Nordberg, “Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with Aβ levels,” Neurobiology of Aging, vol. 29, no. 2, pp. 210–221, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. S. Helisalmi, M. Hiltunen, and M. Hiltunen, “Polymorphism in neprilysin gene affect the risk of Alzheimer's diasease in Finnish patients,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 12, pp. 1746–1748, 2004. View at Publisher · View at Google Scholar · View at PubMed
  113. A. Sakai, H. Ujike, and H. Ujike, “Association of the neprilysin gene with susceptibility to late-onset Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 3, pp. 164–169, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. J. S. Miners, Z. Van Helmond, K. Chalmers, G. Wilcock, S. Love, and P. G. Kehoe, “Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 10, pp. 1012–1021, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. A. -K. Khimji and D. C. Rockey, “Endothelin-Biology and disease,” Cellular Signalling, vol. 22, no. 11, pp. 1615–1625, 2010. View at Publisher · View at Google Scholar · View at PubMed
  116. M. Schmidt, “Molecular characterization of human and bovine endothelin converting enzyme (ECE-1),” FEBS Letters, vol. 356, no. 2-3, pp. 238–243, 1994. View at Publisher · View at Google Scholar
  117. O. Valdenaire, E. Rohrbacher, and M.-G. Mattei, “Organization of the gene encoding the human endothelin-converting enzyme (ECE-1),” Journal of Biological Chemistry, vol. 270, no. 50, pp. 29794–29798, 1995. View at Publisher · View at Google Scholar · View at Scopus
  118. E. A. Eckman, D. K. Reed, and C. B. Eckman, “Degradation of the Alzheimer's amyloid β peptide by endothelin-converting enzyme,” Journal of Biological Chemistry, vol. 276, no. 27, pp. 24540–24548, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. E. A. Eckman, M. Watson, L. Marlow, K. Sambamurti, and C. B. Eckman, “Alzheimer's disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2081–2084, 2003. View at Publisher · View at Google Scholar · View at PubMed
  120. E. A. Eckman, S. K. Adams, and S. K. Adams, “Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 30471–30478, 2006. View at Publisher · View at Google Scholar · View at PubMed
  121. Z. Jin, C. Luxiang, and C. Luxiang, “Endothelin-converting enzyme-1 promoter polymorphisms and susceptibility to sporadic late-onset Alzheimer's disease in a Chinese population,” Disease Markers, vol. 27, no. 5, pp. 211–215, 2009. View at Publisher · View at Google Scholar · View at PubMed
  122. J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Aβ,” American Journal of Pathology, vol. 175, no. 1, pp. 262–270, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. B. Funalot, T. Ouimet, and T. Ouimet, “Endothelin-converting enzyme-1 is expressed in human cerebral cortex and protects against Alzheimer's disease,” Molecular Psychiatry, vol. 9, no. 12, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at PubMed
  124. A. T. Weeraratna, A. Kalehua, and A. Kalehua, “Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues,” Experimental Cell Research, vol. 313, no. 3, pp. 450–461, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. H. Y. T. Yang and E. G. Erdös, “Second kininase in human blood plasma,” Nature, vol. 215, no. 5108, pp. 1402–1403, 1967. View at Publisher · View at Google Scholar · View at Scopus
  126. H. Y. Yang, E. G. Erdös, and Y. Levin, “Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme),” Journal of Pharmacology and Experimental Therapeutics, vol. 177, no. 1, pp. 291–300, 1971. View at Google Scholar · View at Scopus
  127. P. Corvol, A. Michaud, F. Soubrier, and T. A. Williams, “Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme,” Journal of Hypertension, Supplement, vol. 13, no. 3, pp. S3–S10, 1995. View at Google Scholar · View at Scopus
  128. M. R. W. Ehlers and J. F. Riordan, “Angiotensin-converting enzyme: new concepts concerning its biological role,” Biochemistry, vol. 28, no. 13, pp. 5311–5318, 1989. View at Google Scholar · View at Scopus
  129. T. E. Howard, S.-Y. Shai, K. G. Langford, B. M. Martin, and K. E. Bernstein, “Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene,” Molecular and Cellular Biology, vol. 10, no. 8, pp. 4294–4302, 1990. View at Google Scholar · View at Scopus
  130. J. Hu, A. Igarashi, M. Kamata, and H. Nakagawa, “Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity,” Journal of Biological Chemistry, vol. 276, no. 51, pp. 47863–47868, 2001. View at Google Scholar · View at Scopus
  131. K. Zou, T. Maeda, and T. Maeda, “Aβ42-to-Aβ40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme,” Journal of Biological Chemistry, vol. 284, no. 46, pp. 31914–31920, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. K. Zou, H. Yamaguchi, and H. Akatsu, “Angiotensin-converting enzyme converts amyloid beta-protein 1-42 (Abeta(1-42)) to Abeta(1-40), and its inhibition enhances brain Abeta deposition,” Journal of Neuroscience, vol. 27, pp. 8628–8635, 2007. View at Google Scholar
  133. K. Yamada, S. Uchida, and S. Uchida, “Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer's disease,” Brain Research, vol. 1352, pp. 176–186, 2010. View at Publisher · View at Google Scholar · View at PubMed
  134. M. L. Hemming, D. J. Selkoe, and W. Farris, “Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease,” Neurobiology of Disease, vol. 26, no. 1, pp. 273–281, 2007. View at Publisher · View at Google Scholar · View at PubMed
  135. M. Mogi and M. Horiuchi, “Effects of angiotensin II receptor blockers on dementia,” Hypertension Research, vol. 32, no. 9, pp. 738–740, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. G. A. Rosenberg, “Matrix metalloproteinases and their multiple roles in neurodegenerative diseases,” The Lancet Neurology, vol. 8, no. 2, pp. 205–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. P. Yan, X. Hu, and X. Hu, “Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ,” Journal of Biological Chemistry, vol. 281, no. 34, pp. 24566–24574, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. K.-J. Yin, J. R. Cirrito, and J. R. Cirrito, “Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism,” Journal of Neuroscience, vol. 26, no. 43, pp. 10939–10948, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. S. Deb, J. W. Zhang, and P. E. Gottschall, “Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to β-amyloid peptide,” Journal of Neuroscience Research, vol. 55, no. 1, pp. 44–53, 1999. View at Google Scholar
  140. S. S. Jung, W. Zhang, and W. E. Van Nostrand, “Pathogenic Aβ induces the expression and activation of matrix metalloproteinase-2 in human cerebrovascular smooth muscle cells,” Journal of Neurochemistry, vol. 85, no. 5, pp. 1208–1215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. J.-M. Lee, K.-J. Yin, and K.-J. Yin, “Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy,” Annals of Neurology, vol. 54, no. 3, pp. 379–382, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. J. S. Miners, S. Baig, J. Palmer, L. E. Palmer, P. G. Kehoe, and S. Love, “Aβ-degrading enzymes in Alzheimer's disease,” Brain Pathology, vol. 18, no. 2, pp. 240–252, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. U. V. Berger, R. Luthi-Carter, L. A. Passani, S. Elkabes, I. Black, C. Konradi, and J. T. Coyle, “Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system,” Journal of Comparative Neurology, vol. 415, no. 1, pp. 52–64, 1999. View at Publisher · View at Google Scholar · View at Scopus