Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2011 (2011), Article ID 809259, 9 pages
http://dx.doi.org/10.1155/2011/809259
Review Article

Novel Insights into the Role of Caveolin-2 in Cell- and Tissue-Specific Signaling and Function

Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA

Received 7 September 2011; Accepted 13 October 2011

Academic Editor: Andrei Surguchov

Copyright © 2011 Grzegorz Sowa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Williams and M. P. Lisanti, “The caveolin genes: from cell biology to medicine,” Annals of Medicine, vol. 36, no. 8, pp. 584–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Das, R. Y. Lewis, P. E. Scherer, and M. P. Lisanti, “The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for tile assembly of caveolae membranes in vivo,” Journal of Biological Chemistry, vol. 274, no. 26, pp. 18721–18728, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Sowa, M. Pypaert, D. Fulton, and W. C. Sessa, “The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6511–6516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Mora, V. L. Bonilha, A. Marmorstein et al., “Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1,” Journal of Biological Chemistry, vol. 274, no. 36, pp. 25708–25717, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Parolini, M. Sargiacomo, F. Galbiati et al., “Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex,” Journal of Biological Chemistry, vol. 274, no. 36, pp. 25718–25725, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Drab, P. Verkade, M. Elger et al., “Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice,” Science, vol. 293, no. 5539, pp. 2449–2452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Razani, J. A. Engelman, X. B. Wang et al., “Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38121–38138, 2001. View at Google Scholar · View at Scopus
  8. W. M. Krajewska and I. Masłowska, “Caveolins: structure and function in signal transduction,” Cellular and Molecular Biology Letters, vol. 9, no. 2, pp. 195–220, 2004. View at Google Scholar · View at Scopus
  9. H. H. Patel, F. Murray, and P. A. Insel, “Caveolae as organizers of pharmacologically relevant signal transduction molecules,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 359–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. H. Patel, F. Murray, and P. A. Insel, “G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains,” Handbook of Experimental Pharmacology, no. 186, pp. 167–184, 2008. View at Google Scholar · View at Scopus
  11. M. O. Parat, “Chapter 4 the biology of caveolae. Achievements and perspectives,” International Review of Cell and Molecular Biology, vol. 273, pp. 117–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Razani, X. B. Wang, J. A. Engelman et al., “Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae,” Molecular and Cellular Biology, vol. 22, no. 7, pp. 2329–2344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Scheiffele, P. Verkade, A. M. Fra, H. Virta, K. Simons, and E. Ikonen, “Caveolin-1 and-2 in the exocytic pathway of MDCK cells,” Journal of Cell Biology, vol. 140, no. 4, pp. 795–806, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Lahtinen, M. Honsho, R. G. Parton, K. Simons, and P. Verkade, “Involvement of caveolin-2 in caveolar biogenesis in MDCK cells,” FEBS Letters, vol. 538, no. 1–3, pp. 85–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Fujimoto, H. Kogo, R. Nomura, and T. Une, “Isoforms of caveolin-1 and caveolar structure,” Journal of Cell Science, vol. 113, part 19, pp. 3509–3517, 2000. View at Google Scholar · View at Scopus
  16. G. Sowa, L. Xie, L. Xu, and W. C. Sessa, “Serine 23 and 36 phosphorylation of caveolin-2 is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells,” Biochemistry, vol. 47, no. 1, pp. 101–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Lee, D. S. Park, X. B. Wang, P. E. Scherer, P. E. Schwartz, and M. P. Lisanti, “Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1,” Journal of Biological Chemistry, vol. 277, no. 37, pp. 34556–34567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. B. W. Xiao, H. Lee, F. Capozza et al., “Tyrosine phosphorylation of caveolin-2 at residue 27: differences in the spatial and temporal behavior of phospho-Cav-2 (pY19 and pY27),” Biochemistry, vol. 43, no. 43, pp. 13694–13706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Xie, P. G. Frank, M. P. Lisanti, and G. Sowa, “Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts,” American Journal of Physiology—Cell Physiology, vol. 298, no. 3, pp. C693–C701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Shatseva, D. Y. Lee, Z. Deng, and B. B. Yang, “MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2,” Journal of Cell Science, vol. 124, no. 16, pp. 2826–2836, 2011. View at Publisher · View at Google Scholar
  21. L. Xie, C. Vo-Ransdell, B. Abel, C. Willoughby, S. Jang, and G. Sowa, “Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor beta in endothelial cells,” American Journal of Physiology—Cell Physiology, vol. 301, no. 5, pp. C1161–C1174, 2011. View at Google Scholar
  22. B. Razani, S. E. Woodman, and M. P. Lisanti, “Caveolae: from cell biology to animal physiology,” Pharmacological Reviews, vol. 54, no. 3, pp. 431–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kim and Y. Pak, “Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells,” Biochemical and Biophysical Research Communications, vol. 330, no. 1, pp. 88–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kwon, K. Jeong, and Y. Pak, “Identification of pY19-caveolin-2 as a positive regulator of insulin-stimulated actin cytoskeleton-dependent mitogenesis,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 1549–1564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kwon, K. Jeong, E. M. Hwang, J. Y. Park, and Y. Pak, “A novel domain of caveolin-2 that controls nuclear targeting: regulation of insulin-specific ERK activation and nuclear translocation by caveolin-2,” Journal of Cellular and Molecular Medicine, vol. 15, no. 4, pp. 888–908, 2011. View at Publisher · View at Google Scholar
  26. J. A. Engelman, X. L. Zhang, and M. P. Lisanti, “Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers,” FEBS Letters, vol. 436, no. 3, pp. 403–410, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Engelman, R. J. Lee, A. Karnezis et al., “Reciprocal regulation of Neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo: implications for human breast cancer,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 20448–20455, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. P. E. Scherer, R. Y. Lewis, D. Volonté et al., “Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo,” Journal of Biological Chemistry, vol. 272, no. 46, pp. 29337–29346, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. C. Hu, K. Y. Lam, S. Law, J. Wong, and G. Srivastava, “Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESVV) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC,” Clinical Cancer Research, vol. 7, no. 11, pp. 3519–3525, 2001. View at Google Scholar · View at Scopus
  30. A. Fong, E. Garcia, L. Gwynn, M. P. Lisanti, M. J. Fazzari, and M. Li, “Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation,” American Journal of Clinical Pathology, vol. 120, no. 1, pp. 93–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wikman, J. K. Seppänen, V. K. Sarhadi et al., “Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays,” Journal of Pathology, vol. 203, no. 1, pp. 584–593, 2004. View at Publisher · View at Google Scholar
  32. S. E. Elsheikh, A. R. Green, E. A. Rakha et al., “Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype,” British Journal of Cancer, vol. 99, no. 2, pp. 327–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Savage, S. Leung, S. K. Todd et al., “Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer: an immunofluorescence and immunohistochemical analysis,” Breast Cancer Research and Treatment, vol. 110, no. 2, pp. 245–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. L. Gould, G. Williams, and H. D. Nicholson, “Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression,” Prostate, vol. 70, no. 15, pp. 1609–1621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Lee, H. Kwon, K. Jeong, and Y. Pak, “Regulation of cancer cell proliferation by caveolin-2 down-regulation and re-expression,” International Journal of Oncology, vol. 38, no. 5, pp. 1395–1402, 2011. View at Publisher · View at Google Scholar
  36. D. W. Zaas, M. J. Duncan, G. Li, J. R. Wright, and S. N. Abraham, “Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4864–4872, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. D. W. Zaas, Z. D. Swan, B. J. Brown et al., “Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa,” Journal of Biological Chemistry, vol. 284, no. 15, pp. 9955–9964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. G. Y. Chan, M. M. Cardwell, T. M. Hermanas, T. Uchiyama, and J. J. Martinez, “Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner,” Cellular Microbiology, vol. 11, no. 4, pp. 629–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. W. C. Webley, L. C. Norkin, and E. S. Stuart, “Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1,” BMC Infectious Diseases, vol. 4, p. 23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Fujimoto and R. G. Parton, “Not just fat: the structure and function of the lipid droplet,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 3, 2011. View at Google Scholar
  41. T. Fujimoto, H. Kogo, K. Ishiguro, K. Tauchi, and R. Nomura, “Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell,” Journal of Cell Biology, vol. 152, no. 5, pp. 1079–1085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. A. G. Ostermeyer, J. M. Paci, Y. Zeng, D. M. Lublin, S. Munro, and D. A. Brown, “Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets,” Journal of Cell Biology, vol. 152, no. 5, pp. 1071–1078, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Gómez-Ruiz, C. de Miguel, J. Campión, J. A. Martínez, and F. I. Milagro, “Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet,” FEBS Letters, vol. 583, no. 19, pp. 3259–3264, 2009. View at Publisher · View at Google Scholar
  44. M. Moreno, H. Molina, L. Amigo et al., “Hepatic overexpression of caveolins increases bile salt secretion in mice,” Hepatology, vol. 38, no. 6, pp. 1477–1488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. P. E. Scherer, T. Okamoto, M. Chun, I. Nishimoto, H. F. Lodish, and M. P. Lisanti, “Identification, sequence, and expression of caveolin-2 defines a caveolin gene family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 1, pp. 131–135, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. V. O. Rybin, P. W. Grabham, H. Elouardighi, and S. F. Steinberg, “Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 285, no. 1, pp. H325–H332, 2003. View at Google Scholar · View at Scopus
  47. F. Capozza, A. W. Cohen, M. W. C. Cheung et al., “Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells,” American Journal of Physiology—Cell Physiology, vol. 288, no. 3, pp. C677–C691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Shmuel, E. Nodel-Berner, T. Hyman, A. Rouvinski, and Y. Altschuler, “Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells,” Molecular Biology of the Cell, vol. 18, no. 5, pp. 1570–1585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Parker, D. S. Walker, S. Ly, and H. A. Baylis, “Caveolin-2 is required for apical lipid trafficking and suppresses basolateral recycling defects in the intestine of caenorhabditis elegans,” Molecular Biology of the Cell, vol. 20, no. 6, pp. 1763–1771, 2009. View at Google Scholar · View at Scopus
  50. S. Langlois, K. N. Cowan, Q. Shao, B. J. Cowan, and D. W. Laird, “Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 912–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. F. Jasmin, I. Mercier, R. Hnasko et al., “Lung remodeling and pulmonary hypertension after myocardial infarction: pathogenic role of reduced caveolin expression,” Cardiovascular Research, vol. 63, no. 4, pp. 747–755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. E. Woodman, A. W. Ashton, W. Schubert et al., “Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli,” American Journal of Pathology, vol. 162, no. 6, pp. 2059–2068, 2003. View at Google Scholar · View at Scopus
  53. W. Schubert, F. Sotgia, A. W. Cohen et al., “Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation,” American Journal of Pathology, vol. 170, no. 1, pp. 316–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Jasmin, M. Yang, L. Iacovitti, and M. P. Lisanti, “Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain,” Cell Cycle, vol. 8, no. 23, pp. 3978–3983, 2009. View at Google Scholar · View at Scopus
  55. C. J. de Almeida, A. K. Witkiewicz, J. F. Jasmin et al., “Caveolin-2-deficient mice show increased sensitivity to endotoxemia,” Cell Cycle, vol. 10, no. 13, pp. 2151–2161, 2011. View at Publisher · View at Google Scholar