Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012 (2012), Article ID 471325, 16 pages
http://dx.doi.org/10.1155/2012/471325
Review Article

Glycosaminoglycan Storage Disorders: A Review

1Research and Development Unit, Department of Genetics, CGMJM, INSA, Portugal
2Biochemical Genetics Unit, Department of Genetics, CGMJM, INSA, Portugal

Received 2 June 2011; Accepted 9 August 2011

Academic Editor: Laura Alaniz

Copyright © 2012 Maria Francisca Coutinho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. Neufeld and J. Muenzer, “The mucopolysaccharidoses,” in The Metabolic & Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., vol. 3, McGraw–Hill, New York, NY, USA, 8th edition, 2001. View at Google Scholar
  2. R. Giugliani, C. G. Carvalho, S. Herber, and L. L. de Camargo Pinto, “Recent advances in treatment approaches of mucopolysaccharidosis VI,” Current Pharmaceutical Biotechnology, vol. 12, no. 6, pp. 956–962, 2011. View at Publisher · View at Google Scholar
  3. M. Haskins, M. Casal, N. M. Ellinwood, J. Melniczek, H. Mazrier, and U. Giger, “Animal models for mucopolysaccharidoses and their clinical relevance,” Acta Paediatrica, vol. 91, no. 439, supplement, pp. 88–97, 2002. View at Google Scholar · View at Scopus
  4. E. Piotrowska, J. Jakóbkiewicz-Banecka, S. Barańska et al., “Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses,” European Journal of Human Genetics, vol. 14, no. 7, pp. 846–852, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. E. Haskins, P. F. Jezyk, R. J. Desnick, S. K. McDonaugh, and D. F. Patterson, “Alpha L iduronidase deficiency in a cat: a model of mucopolysaccharidosis I,” Pediatric Research, vol. 13, no. 11, pp. 1294–1297, 1979. View at Google Scholar
  6. R. M. Shull, R. J. Munger, and E. Spellacy, “Canine α-L-iduronidase deficiency. A model of mucopolysaccharidosis I,” American Journal of Pathology, vol. 109, no. 2, pp. 244–248, 1982. View at Google Scholar
  7. L. A. Clarke, C. S. Russell, S. Pownall et al., “Murine mucopolysaccharidosis type I: targeted disruption of the murine α-L-iduronidase gene,” Human Molecular Genetics, vol. 6, no. 4, pp. 503–511, 1997. View at Publisher · View at Google Scholar
  8. M. J. Wilkerson, D. C. Lewis, S. L. Marks, and D. J. Prieur, “Clinical and morphologic features of mucopolysaccharidosis type II in a dog: naturally occurring model of Hunter syndrome,” Veterinary Pathology, vol. 35, no. 3, pp. 230–233, 1998. View at Google Scholar
  9. A. R. Garcia, J. Pan, J. C. Lamsa, and J. Muenzer, “The characterization of a murine model of mucopolysaccharidosis II (Hunter syndrome),” Journal of Inherited Metabolic Disease, vol. 30, no. 6, pp. 924–934, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. A. Fischer, K. P. Carmichael, J. F. Munnell et al., “Sulfamidase deficiency in a family of dachshunds: a canine model of mucopolysaccharidosis IIIA (Sanfilippo A),” Pediatric Research, vol. 44, no. 1, pp. 74–82, 1998. View at Google Scholar
  11. R. Bhattacharyya, B. Gliddon, T. Beccari, J. J. Hopwood, and P. Stanley, “A novel missense mutation in lysosomal sulfamidase is the basis of MPS III A in a spontaneous mouse mutant,” Glycobiology, vol. 11, no. 1, pp. 99–103, 2001. View at Google Scholar
  12. N. M. Ellinwood, P. Wang, T. Skeen et al., “A model of mucopolysaccharidosis IIIB (Sanfilippo syndrome type IIIB): N-acetyl-α-D-glucosaminidase deficiency in Schipperke dogs,” Journal of Inherited Metabolic Disease, vol. 26, no. 5, pp. 489–504, 2003. View at Publisher · View at Google Scholar
  13. J. N. Thompson, M. Z. Jones, G. Dawson, and P. S. Huffman, “N-acetylglucosamine 6-sulphatase deficiency in a Nubian goat: a model of Sanfilippo syndrome type D (mucopoly-saccharidosis IIID),” Journal of Inherited Metabolic Disease, vol. 15, no. 5, pp. 760–768, 1992. View at Google Scholar
  14. S. Tomatsu, K. O. Orii, C. Vogler et al., “Mouse model on N-acetylgalactosamine-6-sulfate sulfatase deficiency (Galns-/-) produced by targeted disruption of the gene defective in Morquio A disease,” Human Molecular Genetics, vol. 12, no. 24, pp. 3349–3358, 2003. View at Publisher · View at Google Scholar · View at PubMed
  15. B. MacRì, F. Marino, G. Mazzullo et al., “Mucopolysaccharidosis VI in a Siamese/short-haired European cat,” Journal of Veterinary Medicine A, vol. 49, no. 8, pp. 438–442, 2002. View at Publisher · View at Google Scholar
  16. M. E. Haskins, R. J. Desnick, and N. DiFerrante, “β-glucuronidase deficiency in a dog: a model of human mucopolysaccharidosis VII,” Pediatric Research, vol. 18, no. 10, pp. 980–984, 1984. View at Google Scholar
  17. E. H. Birkenmeier, M. T. Davisson, W. G. Beamer et al., “Murine mucopolysaccharidosis type VII. Characterization of a mouse with β-glucuronidase deficiency,” Journal of Clinical Investigation, vol. 83, no. 4, pp. 1258–1266, 1989. View at Google Scholar
  18. S. Tomatsu, K. Sukegawa, G. G. Trandafirescu et al., “Differences in methylation patterns in the methylation boundary region of IDS gene in hunter syndrome patients: implications for CpG hot spot mutations,” European Journal of Human Genetics, vol. 14, no. 7, pp. 838–845, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. D. C. Martin, V. Atmuri, R. J. Hemming et al., “A mouse model of human mucopolysaccharidosis IX exhibits osteoarthritis,” Human Molecular Genetics, vol. 17, no. 13, pp. 1904–1915, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. V. A. McKusick, Heritable Disorders of Connective Tissue, Mosby, St. Louis, Mo, USA, 4th edition, 1972.
  21. H. S. Scott, X. H. Guo, J. J. Hopwood, and C. P. Morris, “Structure and sequence of the human α-L-iduronidase gene,” Genomics, vol. 13, no. 4, pp. 1311–1313, 1992. View at Publisher · View at Google Scholar
  22. H. S. Scott, L. J. Ashton, H. J. Eyre et al., “Chromosomal localization of the human α-L-iduronidase gene (IDUA) to 4p16.3,” American Journal of Human Genetics, vol. 47, no. 5, pp. 802–807, 1990. View at Google Scholar
  23. E. Spellacy, R. M. Shull, G. Constantopoulos, and E. F. Neufeld, “A canine model of human α-L-iduronidase deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 19, pp. 6091–6095, 1983. View at Google Scholar
  24. L. J. Stoltzfus, B. Sosa-Pineda, S. M. Moskowitz et al., “Cloning and characterization of cDNA encoding canine α-L-iduronidase. mRNA deficiency in mucopolysaccharidosis I dog,” Journal of Biological Chemistry, vol. 267, no. 10, pp. 6570–6575, 1992. View at Google Scholar
  25. K. P. Menon, P. T. Tieu, and E. F. Neufeld, “Architecture of the canine IDUA gene and mutation underlying canine mucopolysaccharidosis I,” Genomics, vol. 14, no. 3, pp. 763–768, 1992. View at Publisher · View at Google Scholar
  26. R. M. Shull, E. D. Kakkis, M. F. McEntee, S. A. Kania, A. J. Jonas, and E. F. Neufeld, “Enzyme replacement in a canine model of Hurler syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12937–12941, 1994. View at Publisher · View at Google Scholar
  27. C. L. S. Grosson, M. E. MacDonald, M. P. Duyao, C. M. Ambrose, S. Roffler Tarlov, and J. F. Gusella, “Synteny conservation of the Huntington's disease gene and surrounding loci on mouse chromosome 5,” Mammalian Genome, vol. 5, no. 7, pp. 424–428, 1994. View at Google Scholar
  28. C. Russell, G. Hendson, G. Jevon et al., “Murine MPS I: insights into the pathogenesis of Hurler syndrome,” Clinical Genetics, vol. 53, no. 5, pp. 349–361, 1998. View at Google Scholar
  29. C. Peters, E. G. Shapiro, and W. Krivit, “Neuropsychological development in children with Hurler syndrome following hematopoietic stem cell transplantation,” Pediatric Transplantation, vol. 2, no. 4, pp. 250–253, 1998. View at Google Scholar
  30. C. Peters, E. G. Shapiro, and W. Krivit, “Hurler syndrome: past, present, and future,” Journal of Pediatrics, vol. 133, no. 1, pp. 7–9, 1998. View at Publisher · View at Google Scholar
  31. S. L. Staba, M. L. Escolar, M. Poe et al., “Cord-blood transplants from unrelated donors in patients with Hurler's syndrome,” New England Journal of Medicine, vol. 350, no. 19, pp. 1960–1969, 2004. View at Publisher · View at Google Scholar · View at PubMed
  32. J. J. Boelens, R. F. Wynn, A. O'Meara et al., “Outcomes of hematopoietic stem cell transplantation for Hurler's syndrome in Europe: a risk factor analysis for graft failure,” Bone Marrow Transplantation, vol. 40, no. 3, pp. 225–233, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. L. A. Clarke, J. E. Wraith, M. Beck et al., “Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I,” Pediatrics, vol. 123, no. 1, pp. 229–240, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. J. E. Wraith, L. A. Clarke, M. Beck et al., “Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase),” Journal of Pediatrics, vol. 144, no. 5, pp. 581–588, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. H. Harada, H. Uchiwa, M. Nakamura et al., “Laronidase replacement therapy improves myocardial function in mucopolysaccharidosis I,” Molecular Genetics and Metabolism, vol. 103, no. 3, pp. 215–219, 2011. View at Publisher · View at Google Scholar · View at PubMed
  36. A. Tylki-Szymanska, J. Marucha, A. Jurecka, M. Syczewska, and B. Czartoryska, “Efficacy of recombinant human α-L-iduronidase (laronidase) on restricted range of motion of upper extremities in mucopolysaccharidosis type i patients,” Journal of Inherited Metabolic Disease, vol. 33, no. 2, pp. 151–157, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. A. Tylki-Szymanska, A. Rozdzynska, A. Jurecka, J. Marucha, and B. Czartoryska, “Anthropometric data of 14 patients with mucopolysaccharidosis I: retrospective analysis and efficacy of recombinant human α-l-iduronidase (laronidase),” Molecular Genetics and Metabolism, vol. 99, no. 1, pp. 10–17, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. O. Gabrielli, L. A. Clarke, S. Bruni, and G. V. Coppa, “Enzyme-replacement therapy in a 5-month-old boy with attenuated presymptomatic MPS I: 5-year follow-up,” Pediatrics, vol. 125, no. 1, pp. e183–e187, 2010. View at Publisher · View at Google Scholar · View at PubMed
  39. J. E. Wraith, J. G. Rogers, and D. M. Danks, “The mucopolysaccharidoses,” Australian Paediatric Journal, vol. 23, no. 6, pp. 329–334, 1987. View at Google Scholar
  40. R. J. Gorlin, M. M. Cohen Jr., and R. C. M. Hennekam, Syndromes of the Head and Neck, Oxford University Press, New York, NY, USA, 4th edition, 2001.
  41. M. D. C. Donaldson, C. A. Pennock, P. J. Berry, A. W. Duncan, J. E. Cawdery, and J. V. Leonard, “Hurler syndrome with cardiomyopathy in infancy,” Journal of Pediatrics, vol. 114, no. 3, pp. 430–432, 1989. View at Google Scholar
  42. J. Shapiro, M. Strome, and A. C. Crocker, “Airway obstruction and sleep apnea in Hurler and Hunter syndromes,” Annals of Otology, Rhinology and Laryngology, vol. 94, no. 5 I, pp. 458–461, 1985. View at Google Scholar
  43. M. Hanson, J. R. Lupski, J. Hicks, and D. Metry, “Association of dermal melanocytosis with lysosomal storage disease: clinical features and hypotheses regarding pathogenesis,” Archives of Dermatology, vol. 139, no. 7, pp. 916–920, 2003. View at Publisher · View at Google Scholar · View at PubMed
  44. V. A. McKusick, D. Kaplan, D. Wise et al., “The genetic mucopolysaccharidoses,” Medicine, vol. 44, no. 6, pp. 445–483, 1965. View at Google Scholar
  45. C. B. Whitley, “The mucopolysaccharidoses,” in McKusick's Heritable Disorders of Connective Tissue, P. Beighton, Ed., Mosby, St. Louis, Mo, USA, 5th edition, 1993. View at Google Scholar
  46. W. H. Perks, R. A. Cooper, and S. Bradbury, “Sleep apnoea in Scheie's syndrome,” Thorax, vol. 35, no. 2, pp. 85–91, 1980. View at Google Scholar
  47. J. E. Wraith, M. Scarpa, M. Beck et al., “Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy,” European Journal of Pediatrics, vol. 167, no. 3, pp. 267–277, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. P. J. Wilson, G. K. Suthers, D. F. Callen et al., “Frequent deletions at Xq28 indicate genetic heterogeneity in Hunter syndrome,” Human Genetics, vol. 86, no. 5, pp. 505–508, 1991. View at Google Scholar
  49. R. H. Flomen, E. P. Green, P. M. Green, D. R. Bentley, and F. Giannelli, “Determination of the organisation of coding sequences within the iduronate sulphate sulphatase (IDS) gene,” Human Molecular Genetics, vol. 2, no. 1, pp. 5–10, 1993. View at Google Scholar
  50. P. J. Wilson, C. A. Meaney, J. J. Hopwood, and C. P. Morris, “Sequence of the human iduronate 2-sulfatase (IDS) gene,” Genomics, vol. 17, no. 3, pp. 773–775, 1993. View at Publisher · View at Google Scholar · View at PubMed
  51. M. L. Bondeson, H. Malmgren, N. Dahl, B. M. Carlberg, and U. Pettersson, “Presence of an IDS-related locus (IDS2) and Xq28 complicates the mutational analysis of Hunter syndrome,” European Journal of Human Genetics, vol. 3, no. 4, pp. 219–227, 1995. View at Google Scholar
  52. C. Peters, M. Balthazor, E. G. Shapiro et al., “Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome,” Blood, vol. 87, no. 11, pp. 4894–4902, 1996. View at Google Scholar
  53. G. V. Coppa, O. Gabrielli, L. Zampini et al., “Bone marrow transplantation in Hunter syndrome (mucopolysaccharidosis type II): two year follow-up of the first Italian patient and review of the literature,” Pediatria Medica e Chirurgica, vol. 17, no. 3, pp. 227–235, 1995. View at Google Scholar
  54. E. J. R. McKinnis, S. Sulzbacher, J. C. Rutledge, J. Sanders, and C. R. Scott, “Bone marrow transplantation in Hunter syndrome,” Journal of Pediatrics, vol. 129, no. 1, pp. 145–148, 1996. View at Google Scholar
  55. T. A. Burrow and N. D. Leslie, “Review of the use of idursulfase in the treatment of mucopolysaccharidosis II,” Biologics, vol. 2, pp. 311–320, 2008. View at Google Scholar
  56. J. Muenzer, J. C. Lamsa, A. Garcia, J. Dacosta, J. Garcia, and D. A. Treco, “Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report,” Acta Paediatrica, vol. 91, no. 439, supplement, pp. 98–99, 2002. View at Google Scholar
  57. A. R. Garcia, J. M. DaCosta, J. Pan, J. Muenzer, and J. C. Lamsa, “Preclinical dose ranging studies for enzyme replacement therapy with idursulfase in a knock-out mouse model of MPS II,” Molecular Genetics and Metabolism, vol. 91, no. 2, pp. 183–190, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. J. Muenzer, M. Gucsavas-Calikoglu, S. E. McCandless, T. J. Schuetz, and A. Kimura, “A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome),” Molecular Genetics and Metabolism, vol. 90, no. 3, pp. 329–337, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. J. Muenzer, J. E. Wraith, M. Beck et al., “A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome),” Genetics in Medicine, vol. 8, no. 8, pp. 465–473, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. F. Papadia, M. S. Lozupone, A. Gaeta, D. Capodiferro, and G. Lacalendola, “Long-term enzyme replacement therapy in a severe case of mucopolysaccharidosis type II (Hunter syndrome),” European Review for Medical and Pharmacological Sciences, vol. 15, no. 3, pp. 253–258, 2011. View at Google Scholar
  61. L. Filippon, C. A. Y. Wayhs, D. M. Atik et al., “DNA damage in leukocytes from pretreatment mucopolysaccharidosis type II patients; protective effect of enzyme replacement therapy,” Mutation Research, vol. 721, no. 2, pp. 206–210, 2011. View at Publisher · View at Google Scholar · View at PubMed
  62. L. Filippon, C. S. Vanzin, G. B. Biancini et al., “Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy,” Molecular Genetics and Metabolism, vol. 103, no. 2, pp. 121–127, 2011. View at Publisher · View at Google Scholar · View at PubMed
  63. J. J. P. Van De Kamp, M. F. Niermeijer, K. Von Figura, and M. A. H. Giesberts, “Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C),” Clinical Genetics, vol. 20, no. 2, pp. 152–160, 1981. View at Google Scholar
  64. H. S. Scott, L. Blanch, X. H. Guo et al., “Cloning of the sulphamidase gene and identification of mutations in Sanfilippo A syndrome,” Nature Genetics, vol. 11, no. 4, pp. 465–467, 1995. View at Google Scholar
  65. L. E. Karageorgos, X. H. Guo, L. Blanch et al., “Structure and sequence of the human sulphamidase gene,” DNA Research, vol. 3, no. 4, pp. 269–271, 1996. View at Google Scholar
  66. E. L. Aronovich, K. P. Carmichael, H. Morizono et al., “Canine heparan sulfate sulfamidase and the molecular pathology underlying Sanfilippo syndrome type A in Dachshunds,” Genomics, vol. 68, no. 1, pp. 80–84, 2000. View at Publisher · View at Google Scholar · View at PubMed
  67. K. M. Hemsley and J. J. Hopwood, “Development of motor deficits in a murine model of mucopolysaccharidosis type IIIA (MPS-IIIA),” Behavioural Brain Research, vol. 158, no. 2, pp. 191–199, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. C. Settembre, A. Fraldi, L. Jahreiss et al., “A block of autophagy in lysosomal storage disorders,” Human Molecular Genetics, vol. 17, no. 1, pp. 119–129, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. A. L. K. Roberts, B. J. Thomas, A. S. Wilkinson, J. M. Fletcher, and S. Byers, “Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA,” Pediatric Research, vol. 60, no. 3, pp. 309–314, 2006. View at Publisher · View at Google Scholar · View at PubMed
  70. J. Jakóbkiewicz-Banecka, A. Wegrzyn, and G. Wegrzyn, “Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases,” Journal of Applied Genetics, vol. 48, no. 4, pp. 383–388, 2007. View at Google Scholar
  71. D. Dziedzic, G. Wgrzyn, and J. Jakóbkiewicz-Banecka, “Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease,” European Journal of Human Genetics, vol. 18, no. 2, pp. 200–205, 2010. View at Publisher · View at Google Scholar · View at PubMed
  72. A. Fraldi, K. Hemsley, A. Crawley et al., “Functional correction of CNS lesions in an MPS-IIIA mouse model by intracerebral AAV-mediated delivery of sulfamidase and SUMF1 genes,” Human Molecular Genetics, vol. 16, no. 22, pp. 2693–2702, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. H. G. Zhao, H. H. Li, A. Schmidtchen, G. Bach, and E. F. Neufeld, “The gene encoding alpha-N-acetylglucosaminidase and mutations underlying Sanfilippo B syndrome,” American Journal of Human Genetics, vol. 57, p. A185, 1995. View at Google Scholar
  74. H. G. Zhao, H. H. Li, G. Bach, A. Schmidtchen, and E. F. Neufeld, “The molecular basis of Sanfilippo syndrome type B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 6101–6105, 1996. View at Publisher · View at Google Scholar
  75. H. H. Li, W. H. Yu, N. Rozengurt et al., “Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase,” Proc Natl Acad Sci USA, vol. 96, no. 5, pp. 14505–14510, 1999. View at Google Scholar
  76. W. H. Yu, K. W. Zhao, S. Ryazantsev, N. Rozengurt, and E. F. Neufeld, “Short-term enzyme replacement in the murine model of sanfilippo syndrome type B,” Molecular Genetics and Metabolism, vol. 71, no. 4, pp. 573–580, 2000. View at Publisher · View at Google Scholar · View at PubMed
  77. K. W. Zhao and E. F. Neufeld, “Purification and characterization of recombinant human α-N-acetylglucosaminidase secreted by Chinese hamster ovary cells,” Protein Expression and Purification, vol. 19, no. 1, pp. 202–211, 2000. View at Publisher · View at Google Scholar · View at PubMed
  78. B. Weber, J. J. Hopwood, and G. Yogalingam, “Expression and characterization of human recombinant and α-N-actylglucosaminidase,” Protein Expression and Purification, vol. 21, no. 2, pp. 251–259, 2001. View at Publisher · View at Google Scholar · View at PubMed
  79. M. Beck, “New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy,” Human Genetics, vol. 121, no. 1, pp. 1–22, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. H. Fu, R. J. Samulski, T. J. McCown, Y. J. Picornell, D. Fletcher, and J. Muenzer, “Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery,” Molecular Therapy, vol. 5, no. 1, pp. 42–49, 2002. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Cressant, N. Desmaris, L. Verot et al., “Improved behavior and neuropathology in the mouse model of sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum,” Journal of Neuroscience, vol. 24, no. 45, pp. 10229–10239, 2004. View at Publisher · View at Google Scholar · View at PubMed
  82. C. D. Heldermon, K. K. Ohlemiller, E. D. Herzog et al., “Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB,” Molecular Therapy, vol. 18, no. 5, pp. 873–880, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. P. Di Natale, C. Di Domenico, N. Gargiulo et al., “Treatment of the mouse model of mucopolysaccharidosis type IIIB with lentiviral-NAGLU vector,” Biochemical Journal, vol. 388, no. 2, pp. 639–646, 2005. View at Publisher · View at Google Scholar · View at PubMed
  84. G. R. D. Villani, A. Follenzi, B. Vanacore, C. Di Domenico, L. Naldini, and P. Di Natale, “Correction of mucopolysaccharidosis type IIIB fibroblasts by lentiviral vector-mediated gene transfer,” Biochemical Journal, vol. 364, no. 3, pp. 747–753, 2002. View at Publisher · View at Google Scholar · View at PubMed
  85. C. Di Domenico, G. R. D. Villani, D. Di Napoli et al., “Intracranial gene delivery of LV-NAGLU vector corrects neuropathology in murine MPS IIIB,” American Journal of Medical Genetics A, vol. 149, no. 6, pp. 1209–1218, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. X. Fan, H. Zhang, S. Zhang et al., “Identification of the gene encoding the enzyme deficient in mucopolysaccharidosis IIIC (Sanfilippo disease type C),” American Journal of Human Genetics, vol. 79, no. 4, pp. 738–744, 2006. View at Publisher · View at Google Scholar · View at PubMed
  87. M. Hřebíček, L. Mrázová, V. Seyrantepe et al., “Mutations in TMEM76* cause mucopolysaccharidosis IIIC (Sanfilippo C syndrome),” American Journal of Human Genetics, vol. 79, no. 5, pp. 807–819, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. M. Feldhammer, S. Durand, and A. V. Pshezhetsky, “Protein misfolding as an underlying molecular defect in mucopolysaccharidosis III type C,” PloS one, vol. 4, no. 10, article e7434, 2009. View at Google Scholar
  89. S. Durand, M. Feldhammer, E. Bonneil, P. Thibault, and A. V. Pshezhetsky, “Analysis of the biogenesis of heparan sulfate acetyl-CoA: α- glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC,” Journal of Biological Chemistry, vol. 285, no. 41, pp. 31233–31242, 2010. View at Publisher · View at Google Scholar · View at PubMed
  90. A. O. Fedele and J. J. Hopwood, “Functional analysis of the HGSNAT gene in patients with mucopolysaccharidosis IIIC (Sanfilippo C syndrome),” Human Mutation, vol. 31, no. 7, pp. E1574–E1586, 2010. View at Publisher · View at Google Scholar · View at PubMed
  91. C. Freeman, P. R. Clements, and J. J. Hopwood, “Human liver N-acetylglucosamine-6-sulphate sulphatase. Purification and characterization,” Biochemical Journal, vol. 246, no. 2, pp. 347–354, 1987. View at Google Scholar
  92. C. Freeman and J. J. Hopwood, “Human liver N-acetylglucosamine-6-phosphate sulphatase. Catalytic properties,” Biochemical Journal, vol. 246, no. 2, pp. 355–365, 1987. View at Google Scholar
  93. D. A. Robertson, D. F. Callen, E. G. Baker, C. P. Morris, and J. J. Hopwood, “Chromosomal localization of the gene for human glucosamine-6-sulphatase to 12q14,” Human Genetics, vol. 79, no. 2, pp. 175–178, 1988. View at Google Scholar
  94. A. Mok, H. Cao, and R. A. Hegele, “Genomic basis of mucopolysaccharidosis type IIID (MIM 252940) revealed by sequencing of GNS encoding N-acetylglucosamine-6-sulfatase,” Genomics, vol. 81, no. 1, pp. 1–5, 2003. View at Publisher · View at Google Scholar
  95. C. E. Beesley, D. Burke, M. Jackson, A. Vellodi, B. G. Winchester, and E. P. Young, “Sanfilippo syndrome type D: identification of the first mutation in the N-acetylglucosamine-6-sulphatase gene,” Journal of Medical Genetics, vol. 40, no. 3, pp. 192–194, 2003. View at Google Scholar
  96. E. Downs-Kelly, M. Z. Jones, J. Alroy et al., “Caprine mucopolysaccharidosis IIID: a preliminary trial of enzyme replacement therapy,” Journal of Molecular Neuroscience, vol. 15, no. 3, pp. 251–262, 2000. View at Publisher · View at Google Scholar · View at PubMed
  97. A. M. Montaño, S. Tomatsu, A. Brusius, M. Smith, and T. Orii, “Growth charts for patients affected with Morquio A disease,” American Journal of Medical Genetics A, vol. 146, no. 10, pp. 1286–1295, 2008. View at Publisher · View at Google Scholar · View at PubMed
  98. S. Tomatsu, S. Fukuda, M. Masue, K. Sukegawa, M. Masuno, and T. Orii, “Mucopolysaccharidosis type IVA: characterization and chromosomal localization of N-acetylgalactosamine-6-sulfate sulfatase gene and genetic heterogeneity,” American Journal of Human Genetics, vol. 51, p. A178, 1992. View at Google Scholar
  99. Y. Nakashima, S. Tomatsu, T. Hori et al., “Mucopolysaccharidosis IV A: molecular cloning of the human N- acetylgalactosamine-6-sulfatase gene (GALNS) and analysis of the 5'-flanking region,” Genomics, vol. 20, no. 1, pp. 99–104, 1994. View at Publisher · View at Google Scholar · View at PubMed
  100. C. P. Morris, X. H. Guo, S. Apostolou, J. J. Hopwood, and H. S. Scott, “Morquio A syndrome: cloning, sequence, and structure of the human N- acetylgalactosamine 6-sulfatase (GALNS) gene,” Genomics, vol. 22, no. 3, pp. 652–654, 1994. View at Publisher · View at Google Scholar · View at PubMed
  101. S. Tomatsu, A. M. Montaño, A. Ohashi et al., “Enzyme replacement therapy in a murine model of Morquio A syndrome,” Human Molecular Genetics, vol. 17, no. 6, pp. 815–824, 2008. View at Publisher · View at Google Scholar · View at PubMed
  102. S. Tomatsu, A. M. Montaño, H. Oikawa et al., “Mucopolysaccharidosis type IVA (morquio a disease): clinical review and current treatment: a special review,” Current Pharmaceutical Biotechnology, vol. 12, no. 6, pp. 931–945, 2011. View at Publisher · View at Google Scholar
  103. A. Rodríguez, A. J. Espejo, A. Hernández et al., “Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 11, pp. 1193–1201, 2010. View at Publisher · View at Google Scholar · View at PubMed
  104. A. Oshima, A. Tsuji, Y. Nagao, H. Sakuraba, and Y. Suzuki, “Cloning, sequencing, and expression of cDNA for human β-galactosidase,” Biochemical and Biophysical Research Communications, vol. 157, no. 1, pp. 238–244, 1988. View at Google Scholar
  105. R. Santamaria, M. Blanco, A. Chabas, D. Grinberg, and L. Vilageliu, “Identification of 14 novel GLB1 mutations, including five deletions, in 19 patients with GM1 gangliosidosis from South America,” Clinical Genetics, vol. 71, no. 3, pp. 273–279, 2007. View at Publisher · View at Google Scholar · View at PubMed
  106. T. Takano and Y. Yamanouchi, “Assignment of human β-galactosidase-A gene to 3p21.33 by fluorescence in situ hybridization,” Human Genetics, vol. 92, no. 4, pp. 403–404, 1993. View at Publisher · View at Google Scholar
  107. H. Morreau, N. J. Galjart, N. Gillemans, R. Willemsen, G. T. J. Van Der Horst, and A. D'Azzo, “Alternative splicing of β-galactosidase mRNA generates the classic lysosomal enzyme and a β-galactosidase-related protein,” Journal of Biological Chemistry, vol. 264, no. 34, pp. 20655–20663, 1989. View at Google Scholar
  108. E. Hinek, “Biological roles of the non-integrin elastin/laminin receptor,” Biological Chemistry, vol. 377, no. 7-8, pp. 471–480, 1996. View at Google Scholar
  109. S. Privitera, C. A. Prody, J. W. Callahan, and A. Hinek, “The 67-kDa enzymatically inactive alternatively spliced variant of β- galactosidase is identical to the elastin/laminin-binding protein,” Journal of Biological Chemistry, vol. 273, no. 11, pp. 6319–6326, 1998. View at Publisher · View at Google Scholar
  110. A. C. M. M. Azevedo, I. V. Schwartz, L. Kalakun et al., “Clinical and biochemical study of 28 patients with mucopolysaccharides type VI,” Clinical Genetics, vol. 66, no. 3, pp. 208–213, 2004. View at Publisher · View at Google Scholar · View at PubMed
  111. L. Karageorgos, D. A. Brooks, A. Pollard et al., “Mutational analysis of 105 mucopolysaccharidosis type VI patients,” Human Mutation, vol. 28, no. 9, pp. 897–903, 2007. View at Publisher · View at Google Scholar · View at PubMed
  112. E. Fidzianska, T. Abramowicz, and B. Czartoryska, “Assignment of the gene for human arylsulfatase B, ARSB, to chromosome region 5p115qter,” Cytogenetics and Cell Genetics, vol. 38, no. 2, pp. 150–151, 1984. View at Google Scholar
  113. D. Auclair, J. J. Hopwood, D. A. Brooks, J. F. Lemontt, and A. C. Crawley, “Replacement therapy in Mucopolysaccharidosis type VI: advantages of early onset of therapy,” Molecular Genetics and Metabolism, vol. 78, no. 3, pp. 163–174, 2003. View at Publisher · View at Google Scholar
  114. D. Auclair, J. Finnie, J. White et al., “Repeated intrathecal injections of recombinant human 4-sulphatase remove dural storage in mature mucopolysaccharidosis VI cats primed with a short-course tolerisation regimen,” Molecular Genetics and Metabolism, vol. 99, no. 2, pp. 132–141, 2010. View at Publisher · View at Google Scholar · View at PubMed
  115. D. Auclair, J. J. Hopwood, J. F. Lemontt, L. Chen, and S. Byers, “Long-term intra-articular administration of recombinant human N-acetylgalactosamine-4-sulfatase in feline mucopolysaccharidosis VI,” Molecular Genetics and Metabolism, vol. 91, no. 4, pp. 352–361, 2007. View at Publisher · View at Google Scholar · View at PubMed
  116. P. Harmatz, R. Giugliani, I. V. D. Schwartz et al., “Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase,” Molecular Genetics and Metabolism, vol. 94, no. 4, pp. 469–475, 2008. View at Publisher · View at Google Scholar · View at PubMed
  117. S. Byers, M. Rothe, J. Lalic, R. Koldej, and D. S. Anson, “Lentiviral-mediated correction of MPS VI cells and gene transfer to joint tissues,” Molecular Genetics and Metabolism, vol. 97, no. 2, pp. 102–108, 2009. View at Publisher · View at Google Scholar · View at PubMed
  118. G. Cotugno, P. Annunziata, A. Tessitore et al., “Long-term amelioration of feline mucopolysaccharidosis VI after AAV-mediated liver gene transfer,” Molecular Therapy, vol. 19, pp. 461–469, 2011. View at Publisher · View at Google Scholar · View at PubMed
  119. J. M. Shipley, M. Klinkenberg, B. M. Wu, D. R. Bachinsky, J. H. Grubb, and W. S. Sly, “Mutational analysis of a patient with mucopolysaccharidosis type VII, and identification of pseudogenes,” American Journal of Human Genetics, vol. 52, no. 3, pp. 517–526, 1993. View at Google Scholar
  120. W. S. Sly, B. A. Quinton, W. H. McAlister, and D. L. Rimoin, “Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis,” The Journal of Pediatrics, vol. 82, no. 2, pp. 249–257, 1973. View at Google Scholar
  121. R. D. Miller, J. W. Hoffmann, P. P. Powell et al., “Cloning and characterization of the human β-glucuronidase gene,” Genomics, vol. 7, no. 2, pp. 280–283, 1990. View at Publisher · View at Google Scholar
  122. F. Speleman, R. Vervoort, N. Van Roy, I. Liebaers, W. S. Sly, and W. Lissens, “Localization by fluorescence in situ hybridization of the human functional β-glucuronidase gene (GUSB) to 7q11.21 → q11.22 and two pseudogenes to 5p13 and 5q13,” Cytogenetics and Cell Genetics, vol. 72, no. 1, pp. 53–55, 1996. View at Google Scholar
  123. J. M. Shipley, M. Klinkenberg, B. M. Wu, D. R. Bachinsky, J. H. Grubb, and W. S. Sly, “Mutational analysis of a patient with mucopolysaccharidosis type VII, and identification of pseudogenes,” American Journal of Human Genetics, vol. 52, no. 3, pp. 517–526, 1993. View at Google Scholar
  124. S. Tomatsu, A. M. Montano, V. C. Dung, J. H. Grubb, and W. S. Sly, “Mutations and polymorphisms in GUSB gene in mucopolysaccharidosis VII (sly syndrome),” Human Mutation, vol. 30, no. 4, pp. 511–519, 2009. View at Publisher · View at Google Scholar · View at PubMed
  125. B. M. Wu, S. Tomatsu, S. Fukuda, K. Sukegawa, T. Orii, and W. S. Sly, “Overexpression rescues the mutant phenotype of L176F mutation causing β- glucuronidase deficiency mucopolysaccharidosis in two Mennonite siblings,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23681–23688, 1994. View at Google Scholar
  126. R. Vervoort, M. R. Islam, W. S. Sly et al., “Molecular analysis of patients with β-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII,” American Journal of Human Genetics, vol. 58, no. 3, pp. 457–471, 1996. View at Google Scholar
  127. I. Schwartz, L. R. Silva, S. Leistner et al., “Mucopolysaccharidosis VII: clinical, biochemical and molecular investigation of a Brazilian family,” Clinical Genetics, vol. 64, no. 2, pp. 172–175, 2003. View at Publisher · View at Google Scholar
  128. M. E. Haskins, G. D. Aguirre, P. F. Jezyk, E. H. Schuchman, R. J. Desnick, and D. F. Patterson, “Mucopolysaccharidosis type VII (Sly syndrome): beta-glucuronidase-deficient mucopolysaccharidosis in the dog,” American Journal of Pathology, vol. 138, no. 6, pp. 1553–1555, 1991. View at Google Scholar
  129. D. C. S. Dombrowski, K. P. Carmichael, P. Wang, T. M. O'Malley, M. E. Haskins, and U. Giger, “Mucopolysaccharidosis type VII in a German shepherd dog,” Journal of the American Veterinary Medical Association, vol. 224, no. 4, pp. 553–532, 2004. View at Publisher · View at Google Scholar
  130. A. Bosch, E. Perret, N. Desmaris, and J. M. Heard, “Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors,” Molecular Therapy, vol. 1, no. 1, pp. 63–70, 2000. View at Publisher · View at Google Scholar · View at PubMed
  131. A. Bosch, E. Perret, N. Desmaris, D. Trono, and J. M. Heard, “Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer,” Human Gene Therapy, vol. 11, no. 8, pp. 1139–1150, 2000. View at Publisher · View at Google Scholar · View at PubMed
  132. Y. Yamada, K. Kato, K. Sukegawa et al., “Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation,” Bone Marrow Transplantation, vol. 21, no. 6, pp. 629–634, 1998. View at Google Scholar
  133. L. C. Ginsburg, D. T. DiFerrante, C. T. Caskey, and N. M. DiFerrante, “Glucosamine-6-SO4 sulfatase deficiency: a new mucopolysaccharidosis,” Clinical Research, vol. 25, p. 471A, 1977. View at Google Scholar
  134. L. C. Ginsberg, P. V. Donnelly, and D. T. Di Ferrante, “N-acetylglucosamine-6-sulfate sulfatase in man: deficiency of the enzyme in a new mucopolysaccharidosis,” Pediatric Research, vol. 12, no. 7, pp. 805–809, 1978. View at Google Scholar
  135. N. Di Ferrante, “N-acetylglucosamine-6-sulfate sulfatase deficiency reconsidered,” Science, vol. 210, no. 4468, p. 448, 1980. View at Google Scholar
  136. M. R. Natowicz, M. P. Short, Y. Wang et al., “Brief report: clinical and biochemical manifestations of hyaluronidase deficiency,” New England Journal of Medicine, vol. 335, no. 14, pp. 1029–1033, 1996. View at Publisher · View at Google Scholar · View at PubMed
  137. B. Triggs-Raine, T. J. Salo, H. Zhang, B. A. Wicklow, and M. R. Natowicz, “Mutations in HYAL1, a member of a tandemly distributed multigene family encoding disparate hyaluronidase activities, cause a newly described lysosomal disorder, mucopolysaccharidosis IX,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6296–6300, 1999. View at Publisher · View at Google Scholar
  138. A. B. Csoka, G. I. Frost, and R. Stern, “The six hyaluronidase-like genes in the human and mouse genomes,” Matrix Biology, vol. 20, no. 8, pp. 499–508, 2001. View at Publisher · View at Google Scholar
  139. L. Jadin, X. Wu, H. Ding et al., “Skeletal and hematological anomalies in HYAL2-deficient mice: a second type of mucopolysaccharidosis IX?” FASEB Journal, vol. 22, no. 12, pp. 4316–4326, 2008. View at Publisher · View at Google Scholar · View at PubMed
  140. W. Krivit, “Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases,” Springer Seminars in Immunopathology, vol. 26, no. 1-2, pp. 119–132, 2004. View at Publisher · View at Google Scholar · View at PubMed
  141. R. Lachmann, “Treatments for lysosomal storage disorders,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1465–1468, 2010. View at Publisher · View at Google Scholar · View at PubMed
  142. P. I. Dickson and A. H. Chen, “Intrathecal enzyme replacement therapy for mucopolysaccharidosis I: translating success in animal models to patients,” Current Pharmaceutical Biotechnology, vol. 12, no. 6, pp. 946–955, 2011. View at Publisher · View at Google Scholar
  143. A. Friso, R. Tomanin, M. Salvalaio, and M. Scarpa, “Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II,” British Journal of Pharmacology, vol. 159, no. 5, pp. 1082–1091, 2010. View at Publisher · View at Google Scholar · View at PubMed
  144. A. L. K. Roberts, B. J. Thomas, A. S. Wilkinson, J. M. Fletcher, and S. Byers, “Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA,” Pediatric Research, vol. 60, no. 3, pp. 309–314, 2006. View at Publisher · View at Google Scholar · View at PubMed
  145. A. L. K. Roberts, M. H. Rees, S. Klebe, J. M. Fletcher, and S. Byers, “Improvement in behaviour after substrate deprivation therapy with rhodamine B in a mouse model of MPS IIIA,” Molecular Genetics and Metabolism, vol. 92, no. 1-2, pp. 115–121, 2007. View at Publisher · View at Google Scholar · View at PubMed
  146. K. J. Langford-Smith, J. Mercer, J. Petty et al., “Heparin cofactor II-thrombin complex and dermatan sulphate: chondroitin sulphate ratio are biomarkers of short- and long-term treatment effects in mucopolysaccharide diseases,” Journal of Inherited Metabolic Disease, vol. 34, no. 2, pp. 499–508, 2011. View at Publisher · View at Google Scholar · View at PubMed
  147. C. M. Simonaro, M. D'Angelo, M. E. Haskins, and E. H. Schuchman, “Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and BioMarkers using animal models,” Pediatric Research, vol. 57, no. 5 I, pp. 701–707, 2005. View at Publisher · View at Google Scholar · View at PubMed
  148. M. Fuller, J. N. Tucker, D. L. Lang et al., “Screening patients referred to a metabolic clinic for lysosomal storage disorders,” Journal of Medical Genetics, vol. 48, no. 6, pp. 422–425, 2011. View at Publisher · View at Google Scholar · View at PubMed
  149. M. Spada, S. Pagliardini, M. Yasuda et al., “High incidence of later-onset Fabry disease revealed by newborn screening,” American Journal of Human Genetics, vol. 79, no. 1, pp. 31–40, 2006. View at Publisher · View at Google Scholar · View at PubMed
  150. H. Y. Lin, K. W. Chong, J. H. Hsu et al., “High incidence of the cardiac variant of fabry disease revealed by newborn screening in the Taiwan Chinese population,” Circulation, vol. 2, no. 5, pp. 450–456, 2009. View at Publisher · View at Google Scholar · View at PubMed
  151. Y. H. Chien, S. C. Chiang, X. K. Zhang et al., “Early detection of pompe disease by newborn screening is feasible: results from the Taiwan screening program,” Pediatrics, vol. 122, no. 1, pp. e39–e45, 2008. View at Publisher · View at Google Scholar · View at PubMed
  152. P. K. Duffner, M. Caggana, J. J. Orsini et al., “Newborn screening for Krabbe disease: the New York state model,” Pediatric Neurology, vol. 40, no. 4, pp. 245–252, 2009. View at Publisher · View at Google Scholar · View at PubMed