Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 497572, 11 pages
http://dx.doi.org/10.1155/2012/497572
Research Article

Caveolin 3, Flotillin 1 and Influenza Virus Hemagglutinin Reside in Distinct Domains on the Sarcolemma of Skeletal Myofibers

1Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, Aapistie 7, 90014 Oulu, Finland
2Department of Health Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland

Received 12 August 2011; Revised 14 October 2011; Accepted 21 October 2011

Academic Editor: Jean-Francois Jasmin

Copyright © 2012 Mika Kaakinen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Porter, G. M. Dmytrenko, J. C. Winkelmann, and R. J. Bloch, “Dystrophin colocalizes with β-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle,” Journal of Cell Biology, vol. 117, no. 5, pp. 997–1005, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. M. W. Williams and R. J. Bloch, “Differential distribution of dystrophin and β-spectrin at the sarcolemma of fast twitch skeletal muscle fibers,” Journal of Muscle Research and Cell Motility, vol. 20, no. 4, pp. 383–393, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Koening, A. H. Beggs, M. Moyer et al., “The molecular basis for Duchenne versus becker muscular dystrophy: correlation of severity with type of deletion,” American Journal of Human Genetics, vol. 45, no. 4, pp. 498–506, 1989. View at Google Scholar · View at Scopus
  4. P. Rahkila, T. E. S. Takala, R. G. Parton, and K. Metsikkö, “Protein targeting to the plasma membrane of adult skeletal muscle fiber: an organized mosaic of functional domains,” Experimental Cell Research, vol. 267, no. 1, pp. 61–72, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. H. Papponen, T. Kaisto, V. V. Myllylä, R. Myllylä, and K. Metsikkö, “Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel,” Experimental Neurology, vol. 191, no. 1, pp. 163–173, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. M. Kaakinen, P. Salmela, S. Zelenin, and K. Metsikkö, “Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres,” Cell and Tissue Research, vol. 329, no. 3, pp. 529–539, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. K. A. Melkonian, A. G. Ostermeyer, J. Z. Chen, M. G. Roth, and D. A. Brown, “Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated,” The Journal of Biological Chemistry, vol. 274, no. 6, pp. 3910–3917, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Levental, D. Lingwood, M. Grzybek, U. Coskun, and K. Simons, “Palmitoylation regulates raft affinity for the majority of integral raft proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 51, pp. 22050–22054, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Friedrichson and T. V. Kurzchalia, “Microdomains of GPI-anchored proteins in living cells revealed by crosslinking,” Nature, vol. 394, no. 6695, pp. 802–805, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Harder, P. Scheiffele, P. Verkade, and K. Simons, “Lipid domain structure of the plasma membrane revealed by patching of membrane components,” Journal of Cell Biology, vol. 141, no. 4, pp. 929–942, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Pralle, P. Keller, E. L. Florin, K. Simons, and J. K. H. Hörber, “Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells,” Journal of Cell Biology, vol. 148, no. 5, pp. 997–1008, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 44, pp. 17370–17375, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Thomsen, K. Roepstorff, M. Stahlhut, and B. van Deurs, “Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking,” Molecular Biology of the Cell, vol. 13, no. 1, pp. 238–250, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. E. Shvartsman, M. Kotler, R. D. Tall, M. G. Roth, and Y. I. Henis, “Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts,” Journal of Cell Biology, vol. 163, no. 4, pp. 879–888, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. Bekoff and W. Betz, “Properties of isolated adult rat muscle fibres maintained in tissue culture,” Journal of Physiology, vol. 271, no. 2, pp. 537–547, 1977. View at Google Scholar · View at Scopus
  16. J. L. Goldstein, S. K. Basu, and M. S. Brown, “Receptor-mediated endocytosis of low-density lipoprotein in cultured cells,” Methods in Enzymology, vol. 98, pp. 241–260, 1983. View at Google Scholar · View at Scopus
  17. J. W. Slot and H. J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry,” European Journal of Cell Biology, vol. 38, no. 1, pp. 87–93, 1985. View at Google Scholar · View at Scopus
  18. T. Kaisto, V. Luukela, E. Birr, and K. Metsikkö, “Retargeting of viral glycoproteins into a non-exporting compartment during the myogenic differentiation of rat L6 cells,” Cell and Tissue Research, vol. 308, no. 3, pp. 381–390, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. P. Scheiffele, M. G. Roth, and K. Simons, “Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain,” The EMBO Journal, vol. 16, no. 18, pp. 5501–5508, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. Rajendran, S. Le Lay, and H. Illges, “Raft association and lipid droplet targeting of flotillins are independent of caveolin,” Biological Chemistry, vol. 388, no. 3, pp. 307–314, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Frick, N. A. Bright, K. Riento, A. Bray, C. Merrified, and B. J. Nichols, “Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding,” Current Biology, vol. 17, no. 13, pp. 1151–1156, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. W. Anderson, “Caveolin, a protein component of caveolae membrane coats,” Cell, vol. 68, no. 4, pp. 673–682, 1992. View at Google Scholar · View at Scopus
  23. R. Fettiplace and D. A. Haydon, “Water permeability of lipid membranes,” Physiological Reviews, vol. 60, no. 2, pp. 510–550, 1980. View at Google Scholar · View at Scopus
  24. J. E. Skibbens, M. G. Roth, and K. S. Matlin, “Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts,” Journal of Cell Biology, vol. 108, no. 3, pp. 821–832, 1989. View at Google Scholar · View at Scopus
  25. P. Scheiffele, P. Verkade, A. M. Fra, H. Virta, K. Simons, and E. Ikonen, “Caveolin-1 and -2 in the exocytic pathway of MDCK cells,” Journal of Cell Biology, vol. 140, no. 4, pp. 795–806, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Sarnataro, S. Paladino, V. Campana, J. Grassi, L. Nitsch, and C. Zurzolo, “PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts,” Traffic, vol. 3, no. 11, pp. 810–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Tivodar, S. Paladino, R. Pillich et al., “Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells,” FEBS Letters, vol. 580, no. 24, pp. 5705–5712, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. E. Ralston and T. Ploug, “Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers,” Experimental Cell Research, vol. 246, no. 2, pp. 510–515, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. F. Sotgia, J. K. Lee, K. Das et al., “Caveolin-3 directly interacts with the C-terminal tail of β-dystroglycan. Identification of a central WW-like domain within caveolin family members,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 38048–38058, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. F. Galbiati, J. A. Engelman, D. Volonte et al., “Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities,” The Journal of Biological Chemistry, vol. 276, no. 24, pp. 21425–21433, 2001. View at Publisher · View at Google Scholar · View at PubMed
  31. R. M. Murphy, J. P. Mollica, and G. D. Lamb, “Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules,” Experimental Cell Research, vol. 315, no. 6, pp. 1015–1028, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. D. Volonte, F. Galbiati, S. Li, K. Nishiyama, T. Okamoto, and M. P. Lisanti, “Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo: characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe,” The Journal of Biological Chemistry, vol. 274, no. 18, pp. 12702–12709, 1999. View at Publisher · View at Google Scholar
  33. R. J. Scheibe, K. Mundhenk, T. Becker et al., “Carbonic anhydrases IV and IX: subcellular localization and functional role in mouse skeletal muscle,” American Journal of Physiology, vol. 294, no. 2, pp. C402–C412, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. K Röper, D. Corbeil, W. B. Huttner et al., “Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane,” Nature Cell Biology, vol. 2, pp. 582–592, 2000. View at Publisher · View at Google Scholar · View at PubMed
  35. P. Sharma, R. Varma, R. C. Sarasij et al., “Nanoscale organization of multiple GPI-anchored proteins in living cell membranes,” Cell, vol. 116, no. 4, pp. 577–589, 2004. View at Publisher · View at Google Scholar
  36. S. Ilangumaran and D. C. Hoessli, “Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane,” Biochemical Journal, vol. 335, no. 2, pp. 433–440, 1998. View at Google Scholar
  37. R. Jacob and H. Y. Naim, “Apical membrane proteins are transported in distinct vesicular carriers,” Current Biology, vol. 11, no. 18, pp. 1444–1450, 2001. View at Publisher · View at Google Scholar
  38. R. W. Klemm, C. S. Ejsing, M. A. Surma et al., “Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network,” Journal of Cell Biology, vol. 185, no. 4, pp. 601–612, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. S. Scolari, S. Engel, N. Krebs et al., “Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging,” The Journal of Biological Chemistry, vol. 284, no. 23, pp. 15708–15716, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. M. E. Adams, H. A. Mueller, and S. C. Froehner, “In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4,” Journal of Cell Biology, vol. 155, no. 1, pp. 113–122, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. W. Williams, W. G. Resneck, T. Kaysser et al., “Na,K-ATPase in skeletal muscle: two populations of β-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules,” Journal of Cell Science, vol. 114, no. 4, pp. 751–762, 2001. View at Google Scholar · View at Scopus