Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 951539, 12 pages
http://dx.doi.org/10.1155/2012/951539
Review Article

Mitochondria Death/Survival Signaling Pathways in Cardiotoxicity Induced by Anthracyclines and Anticancer-Targeted Therapies

Department of Physiology (EA4484), Faculty of Medicine, University of Lille 1, Place de Verdun, 59045 Lille, France

Received 16 November 2011; Revised 4 January 2012; Accepted 9 January 2012

Academic Editor: Catherine Brenner

Copyright © 2012 David Montaigne et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Eschenhagen, T. Force, M. S. Ewer et al., “Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology,” European Journal of Heart Failure, vol. 13, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. S. Ewer and S. M. Ewer, “Cardiotoxicity of anticancer treatments: what the cardiologist needs to know,” Nature Reviews Cardiology, vol. 7, no. 10, pp. 564–575, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. C. van Dalen, H. N. Caron, H. O. Dickinson, and L. C. Kremer, “Cardioprotective interventions for cancer patients receiving anthracyclines,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003917, 2005. View at Google Scholar · View at Scopus
  4. A. L. A. Ferreira, L. S. Matsubara, and B. B. Matsubara, “Anthracycline-induced cardiotoxicity,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 6, no. 4, pp. 278–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Monsuez, J. C. Charniot, N. Vignat, and J. Y. Artigou, “Cardiac side-effects of cancer chemotherapy,” International Journal of Cardiology, vol. 144, no. 1, pp. 3–15, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. W. Saif, M. M. Shah, and A. R. Shah, “Fluoropyrimidine-associated cardiotoxicity: revisited,” Expert Opinion on Drug Safety, vol. 8, no. 2, pp. 191–202, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. M. Gressett and S. R. Shah, “Intricacies of bevacizumab-induced toxicities and their management,” Annals of Pharmacotherapy, vol. 43, no. 3, pp. 490–501, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. T. Meinardi, W. T. A. Van Der Graaf, D. J. Van Veldhuisen, J. A. Gietema, E. G. E. De Vries, and D. T. Sleijfer, “Detection of anthracycline-induced cardiotoxicity,” Cancer Treatment Reviews, vol. 25, no. 4, pp. 237–247, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. U. Buzdar, C. Marcus, T. L. Smith, and G. R. Blumenschein, “Early and delayed clinical cardiotoxicity of doxorubicin,” Cancer, vol. 55, no. 12, pp. 2761–2765, 1985. View at Google Scholar · View at Scopus
  10. E. T. Yeh and C. L. Bickford, “Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management,” Journal of the American College of Cardiology, vol. 53, no. 24, pp. 2231–2247, 2009. View at Google Scholar · View at Scopus
  11. S. Aggarwal, “Targeted cancer therapies,” Nature Reviews Drug Discovery, vol. 9, no. 6, pp. 427–428, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. T. Force and K. L. Kolaja, “Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes,” Nature Reviews Drug Discovery, vol. 10, no. 2, pp. 111–126, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. T. Force, D. S. Krause, and R. A. Van Etten, “Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition,” Nature Reviews Cancer, vol. 7, no. 5, pp. 332–344, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Cheng and T. Force, “Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics,” Circulation Research, vol. 106, no. 1, pp. 21–34, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. H. Chen, R. Kerkelä, and T. Force, “Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics,” Circulation, vol. 118, no. 1, pp. 84–95, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. A. Crone, Y. Y. Zhao, L. Fan et al., “ErbB2 is essential in the prevention of dilated cardiomyopathy,” Nature Medicine, vol. 8, no. 5, pp. 459–465, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. G. W. De Keulenaer, K. Doggen, and K. Lemmens, “The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy,” Circulation Research, vol. 106, no. 1, pp. 35–46, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. B. Sawyer, X. Peng, B. Chen, L. Pentassuglia, and C. C. Lim, “Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection?” Progress in Cardiovascular Diseases, vol. 53, no. 2, pp. 105–113, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. H. Chen, S. D. Colan, and L. Diller, “Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers,” Circulation Research, vol. 108, no. 5, pp. 619–628, 2011. View at Publisher · View at Google Scholar · View at PubMed
  20. Y. W. Zhang, J. Shi, Y. J. Li, and L. Wei, “Cardiomyocyte death in doxorubicin-induced cardiotoxicity,” Archivum Immunologiae et Therapiae Experimentalis, vol. 57, no. 6, pp. 435–445, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Ryberg, D. Nielsen, G. Cortese, G. Nielsen, T. Skovsgaard, and P. K. Andersen, “New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients,” Journal of the National Cancer Institute, vol. 100, no. 15, pp. 1058–1067, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. B. N. Bernaba, J. B. Chan, C. K. Lai, and M. C. Fishbein, “Pathology of late-onset anthracycline cardiomyopathy,” Cardiovascular Pathology, vol. 19, no. 5, pp. 308–311, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. H. De Graaf, W. V. Dolsma, P. H. B. Willemse et al., “Cardiotoxicity from intensive chemotherapy combined with radiotherapy in breast cancer,” British Journal of Cancer, vol. 76, no. 7, pp. 943–945, 1997. View at Google Scholar · View at Scopus
  24. B. M. P. Aleman, A. W. Van Den Belt-Dusebout, M. L. De Bruin et al., “Late cardiotoxicity after treatment for Hodgkin lymphoma,” Blood, vol. 109, no. 5, pp. 1878–1886, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. P. A. Ganz, M. A. Hussey, C. M. Moinpour et al., “Late cardiac effects of adjuvant chemotherapy in breast cancer survivors treated on Southwest Oncology Group protocol S8897,” Journal of Clinical Oncology, vol. 26, no. 8, pp. 1223–1230, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. S. M. Swain, F. S. Whaley, and M. S. Ewer, “Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials,” Cancer, vol. 97, no. 11, pp. 2869–2879, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. Šimůnek, M. Štěrba, O. Popelová, M. Adamcová, R. Hrdina, and V. Gerši, “Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron,” Pharmacological Reports, vol. 61, no. 1, pp. 154–171, 2009. View at Google Scholar
  28. E. Raschi, V. Vasina, M. G. Ursino, G. Boriani, A. Martoni, and F. de Ponti, “Anticancer drugs and cardiotoxicity: insights and perspectives in the era of targeted therapy,” Pharmacology and Therapeutics, vol. 125, no. 2, pp. 196–218, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. Tokarska-Schlattner, M. Zaugg, C. Zuppinger, T. Wallimann, and U. Schlattner, “New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 3, pp. 389–405, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. B. Chen, X. Peng, L. Pentassuglia, C. C. Lim, and D. B. Sawyer, “Molecular and cellular mechanisms of anthracycline cardiotoxicity,” Cardiovascular Toxicology, vol. 7, no. 2, pp. 114–121, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. V. A. Sardão, P. J. Oliveira, J. Holy, C. R. Oliveira, and K. B. Wallace, “Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets,” Cell Biology and Toxicology, vol. 25, no. 3, pp. 227–243, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. D. Rayson, D. Richel, S. Chia, C. Jackisch, S. van der Vegt, and T. Suter, “Anthracycline-trastuzumab regimens for HER2/neu-overexpressing breast cancer: current experience and future strategies,” Annals of Oncology, vol. 19, no. 9, pp. 1530–1539, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. Horie, K. Ono, H. Nishi et al., “Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway,” Cardiovascular Research, vol. 87, no. 4, pp. 656–664, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. G. Keizer, H. M. Pinedo, G. J. Schuurhuis, and H. Joenje, “Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity,” Pharmacology and Therapeutics, vol. 47, no. 2, pp. 219–231, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Wojnowski, B. Kulle, M. Schirmer et al., “NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity,” Circulation, vol. 112, no. 24, pp. 3754–3762, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. G. Minotti, R. Ronchi, E. Salvatorelli, P. Menna, and G. Cairo, “Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy,” Cancer Research, vol. 61, no. 23, pp. 8422–8428, 2001. View at Google Scholar · View at Scopus
  37. S. Fogli, P. Nieri, and M. C. Breschi, “The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage,” The FASEB Journal, vol. 18, no. 6, pp. 664–675, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity,” Pharmacological Reviews, vol. 56, no. 2, pp. 185–229, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. A. Rowan, M. A. Masek, and M. E. Billingham, “Ultrastructural morphometric analysis of endomyocardial biopsies. Idiopathic dilated cardiomyopathy, anthracycline cardiotoxicity, and normal myocardium,” American Journal of Cardiovascular Pathology, vol. 2, no. 2, pp. 137–144, 1988. View at Google Scholar · View at Scopus
  40. J. M. Berthiaume and K. B. Wallace, “Adriamycin-induced oxidative mitochondrial cardiotoxicity,” Cell Biology and Toxicology, vol. 23, no. 1, pp. 15–25, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. B. Wallace, “Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis,” Cardiovascular Toxicology, vol. 7, no. 2, pp. 101–107, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Bernardi, A. Krauskopf, E. Basso et al., “The mitochondrial permeability transition from in vitro artifact to disease target,” FEBS Journal, vol. 273, no. 10, pp. 2077–2099, 2006. View at Publisher · View at Google Scholar · View at PubMed
  43. A. P. Halestrap, “What is the mitochondrial permeability transition pore?” Journal of Molecular and Cellular Cardiology, vol. 46, no. 6, pp. 821–831, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. C. P. Baines, “The mitochondrial permeability transition pore and ischemia-reperfusion injury,” Basic Research in Cardiology, vol. 104, no. 2, pp. 181–188, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. P. Baines, “The molecular composition of the mitochondrial permeability transition pore,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 6, pp. 850–857, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. T. Nakagawa, S. Shimizu, T. Watanabe et al., “Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death,” Nature, vol. 434, no. 7033, pp. 652–658, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. A. C. Schinzel, O. Takeuchi, Z. Huang et al., “Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12005–12010, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. H. Nakayama, X. Chen, C. P. Baines et al., “Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2431–2444, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. E. Arbustini, A. Brega, and J. Narula, “Ultrastructural definition of apoptosis in heart failure,” Heart Failure Reviews, vol. 13, no. 2, pp. 121–135, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. T. L'Ecuyer, Z. Allebban, R. Thomas, and R. Vander Heide, “Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death,” American Journal of Physiology, vol. 286, no. 6, pp. H2057–H2064, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. Lu, W. Wu, J. Yan, X. Li, H. Yu, and X. Yu, “Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure,” International Journal of Cardiology, vol. 134, no. 1, pp. 82–90, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Nicolay, J. J. Fok, and W. Voorhout, “Cytofluorescence detection of adriamycin-mitochondria interactions in isolated, perfused rat heart,” Biochimica et Biophysica Acta, vol. 887, no. 1, pp. 35–41, 1986. View at Google Scholar · View at Scopus
  53. M. Tokarska-Schlattner, M. Zaugg, R. Da Silva et al., “Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply,” American Journal of Physiology, vol. 289, no. 1, pp. H37–H47, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. Javadov, J. C. Hunter, G. Barreto-Torres, and R. Parodi-Rullan, “Targeting the mitochondrial permeability transition: cardiac ischemia-reperfusion versus carcinogenesis,” Cellular Physiology and Biochemistry, vol. 27, no. 3-4, pp. 179–190, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. L. E. Solem and K. B. Wallace, “Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin,” Toxicology and Applied Pharmacology, vol. 121, no. 1, pp. 50–57, 1993. View at Publisher · View at Google Scholar · View at Scopus
  56. L. E. Solem, T. R. Henry, and K. B. Wallace, “Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration,” Toxicology and Applied Pharmacology, vol. 129, no. 2, pp. 214–222, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. L. E. Solem, L. J. Heller, K. B. Wallace, and K. B. Wallace, “Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 5, pp. 1023–1032, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. S. Zhou, A. Starkov, M. K. Froberg, R. L. Leino, and K. B. Wallace, “Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin,” Cancer Research, vol. 61, no. 2, pp. 771–777, 2001. View at Google Scholar · View at Scopus
  59. I. A. Al-Nasser, “In vivo prevention of adriamycin cardiotoxicity by cyclosporin A or FK506,” Toxicology, vol. 131, no. 2-3, pp. 175–181, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Marechal, D. Montaigne, C. Marciniak et al., “Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics,” Clinical Science, vol. 121, no. 9, pp. 405–413, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. D. Montaigne, X. Marechal, S. Preau et al., “Doxorubicin induces mitochondrial permeability transition and contractile dysfunction in the human myocardium,” Mitochondrion, vol. 11, no. 1, pp. 22–26, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Ovize, G. F. Baxter, F. Di Lisa et al., “Postconditioning and protection from reperfusion injury: where do we stand: position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology,” Cardiovascular Research, vol. 87, no. 3, pp. 406–423, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. K. H. Kim, G. Y. Oudit, and P. H. Backx, “Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 1, pp. 160–169, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. H. B. Suliman, M. S. Carraway, A. S. Ali, C. M. Reynolds, K. E. Welty-Wolf, and C. A. Piantadosi, “The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy,” The Journal of Clinical Investigation, vol. 117, no. 12, pp. 3730–3741, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. K. Li, R. Y. T. Sung, Z. H. Wei et al., “Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin,” Circulation, vol. 113, no. 18, pp. 2211–2220, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. G. C. Fan, X. Zhou, X. Wang et al., “Heat shock protein 20 interacting with phosphorylated akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity,” Circulation Research, vol. 103, no. 11, pp. 1270–1279, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. R. A. Thandavarayan, K. Watanabe, F. R. Sari et al., “Modulation of doxorubicin-induced cardiac dysfunction in dominant-negative p38α mitogen-activated protein kinase mice,” Free Radical Biology and Medicine, vol. 49, no. 9, pp. 1422–1431, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Khan, S. Varadharaj, L. P. Ganesan et al., “C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling,” American Journal of Physiology, vol. 290, no. 5, pp. H2136–H2145, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. E. Bartha, I. Solti, A. Szabo et al., “Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure,” Journal of Cardiovascular Pharmacology, vol. 58, no. 4, pp. 380–391, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. J. M. Berthiaume and K. B. Wallace, “Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment,” Cardiovascular Toxicology, vol. 7, no. 3, pp. 178–191, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. A. V. Pointon, T. M. Walker, K. M. Phillips et al., “Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation,” PloS One, vol. 5, no. 9, Article ID e12733, 2010. View at Google Scholar
  72. S. Abdel-Aleem, M. M. El-Merzabani, M. Sayed-Ahmed, D. A. Taylor, and J. E. Lowe, “Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 2, pp. 789–797, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. Wakasugi, A. J. Fischman, J. W. Babich et al., “Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy,” Journal of Nuclear Medicine, vol. 34, no. 9, pp. 1529–1535, 1993. View at Google Scholar · View at Scopus
  74. S. Hrelia, D. Fiorentini, T. Maraldi et al., “Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes,” Biochimica et Biophysica Acta, vol. 1567, pp. 150–156, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Jeyaseelan, C. Poizat, H. Y. Wu, and L. Kedes, “Molecular mechanisms of doxorubicin-induced cardiomyopathy. Selective suppression of Reiske iron-sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes,” The Journal of Biological Chemistry, vol. 272, no. 9, pp. 5828–5832, 1997. View at Publisher · View at Google Scholar · View at Scopus
  76. K. L. Thompson, B. A. Rosenzweig, J. Zhang et al., “Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats,” Cancer Chemotherapy and Pharmacology, vol. 66, no. 2, pp. 303–314, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. P. J. Fernandez-Marcos and J. Auwerx, “Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis,” American Journal of Clinical Nutrition, vol. 93, no. 4, pp. 884S–890S, 2011. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Štěrba, O. Popelová, J. Lenčo et al., “Proteomic insights into chronic anthracycline cardiotoxicity,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 5, pp. 849–862, 2011. View at Publisher · View at Google Scholar · View at PubMed
  79. S. N. Kumar, E. A. Konorev, D. Aggarwal, and B. Kalyanaraman, “Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte,” Journal of Proteomics, vol. 74, no. 5, pp. 683–697, 2011. View at Publisher · View at Google Scholar · View at PubMed
  80. R. L. Jones and D. W. Miles, “Use of endomyocardial biopsy to assess anthracycline-induced cardiotoxicity,” Lancet Oncology, vol. 6, no. 2, p. 67, 2005. View at Publisher · View at Google Scholar · View at PubMed
  81. B. Mackay, M. S. Ewer, C. H. Carrasco, and R. S. Benjamin, “Assessment of anthracycline cardiomyopathy by endomyocardial biopsy,” Ultrastructural Pathology, vol. 18, no. 1-2, pp. 203–211, 1994. View at Google Scholar · View at Scopus
  82. C. C. Lim, C. Zuppinger, X. Guo et al., “Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes,” The Journal of Biological Chemistry, vol. 279, no. 9, pp. 8290–8299, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. M. Arai, A. Yoguchi, T. Takizawa et al., “Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca2+-ATPase gene transcription,” Circulation Research, vol. 86, no. 1, pp. 8–14, 2000. View at Google Scholar · View at Scopus
  84. S. R. M. Holmberg and A. J. Williams, “Patterns of interaction between anthraquinone drugs and the calcium-release channel from cardiac sarcoplasmic reticulum,” Circulation Research, vol. 67, no. 2, pp. 272–283, 1990. View at Google Scholar · View at Scopus
  85. Y. X. Wang and M. Korth, “Effects of doxorubicin on excitation-contraction coupling in guinea pig ventricular myocardium,” Circulation Research, vol. 76, no. 4, pp. 645–653, 1995. View at Google Scholar · View at Scopus
  86. R. D. Olson, P. S. Mushlin, D. E. Brenner et al., “Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 10, pp. 3585–3589, 1988. View at Google Scholar · View at Scopus
  87. Y. Kim, A. G. Ma, K. Kitta et al., “Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis,” Molecular Pharmacology, vol. 63, no. 2, pp. 368–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Aries, P. Paradis, C. Lefebvre, R. J. Schwartz, and M. Nemer, “Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 18, pp. 6975–6980, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. S. Kobayashi, P. Volden, D. Timm, K. Mao, X. Xu, and Q. Liang, “Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death,” The Journal of Biological Chemistry, vol. 285, no. 1, pp. 793–804, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. S. Pikkarainen, H. Tokola, R. Kerkelä, and H. Ruskoaho, “GATA transcription factors in the developing and adult heart,” Cardiovascular Research, vol. 63, no. 2, pp. 196–207, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. L. Li, G. Takemura, Y. Li et al., “Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy,” Circulation, vol. 113, no. 4, pp. 535–543, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. R. Jeyaseelan, C. Poizat, R. K. Baker et al., “A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes,” The Journal of Biological Chemistry, vol. 272, no. 36, pp. 22800–22808, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Arimura, J. M. Bos, A. Sato et al., “Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 334–342, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. C. Poizat, P. L. Puri, Y. Bai, and L. Kedes, “Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells,” Molecular and Cellular Biology, vol. 25, no. 7, pp. 2673–2687, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. T. L'Ecuyer, S. Sanjeev, R. Thomas et al., “DNA damage is an early event in doxorubicin-induced cardiac myocyte death,” American Journal of Physiology, vol. 291, no. 3, pp. H1273–H1280, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. W. Zhu, M. H. Soonpaa, H. Chen et al., “Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway,” Circulation, vol. 119, no. 1, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. K. Lemmens, K. Doggen, and G. W. De Keulenaer, “Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure,” Circulation, vol. 116, no. 8, pp. 954–960, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. A. Gumà, V. Martínez-Redondo, I. López-Soldado, C. Cantó, and A. Zorzano, “Emerging role of neuregulin as a modulator of muscle metabolism,” American Journal of Physiology, vol. 298, no. 4, pp. E742–E750, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. X. Peng, B. Chen, C. C. Lim, and D. B. Sawyer, “The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine,” Molecular Interventions, vol. 5, no. 3, pp. 163–171, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. H. Cheng and T. Force, “Why do kinase inhibitors cause cardiotoxicity and what can be done about it?” Progress in Cardiovascular Diseases, vol. 53, no. 2, pp. 114–120, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. T. F. Chu, M. A. Rupnick, R. Kerkela et al., “Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib,” The Lancet, vol. 370, no. 9604, pp. 2011–2019, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. R. Kerkela, K. C. Woulfe, J. B. Durand et al., “Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase,” Clinical and Translational Science, vol. 2, no. 1, pp. 15–25, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M.-B. Chen, X.-Y. Wu, J.-H. Gu, Q.-T. Guo, W.-X. Shen, and P.-H. Lu, “Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells,” Cell Biochemistry and Biophysics, vol. 60, no. 3, pp. 311–322, 2011. View at Publisher · View at Google Scholar · View at PubMed
  104. R. Kerkelä, L. Grazette, R. Yacobi et al., “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate,” Nature Medicine, vol. 12, no. 8, pp. 908–916, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. A. Fernández, A. Sanguino, Z. Peng et al., “An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic,” The Journal of Clinical Investigation, vol. 117, no. 12, pp. 4044–4054, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. J. L. V. Reeve, E. Szegezdi, S. E. Logue et al., “Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-xL,” Journal of Cellular and Molecular Medicine, vol. 11, no. 3, pp. 509–520, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus