Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2014, Article ID 657189, 12 pages
http://dx.doi.org/10.1155/2014/657189
Review Article

Exploring Drug Targets in Isoprenoid Biosynthetic Pathway for Plasmodium falciparum

1Department of Biotechnology, Faculty of Engineering & Technology, Raja Balwant Singh, Engineering Technical Campus, Agra 283105, India
2Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
3Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
4Department of Biochemistry, University of Allahabad, Allahabad, India

Received 24 December 2013; Revised 7 February 2014; Accepted 7 February 2014; Published 23 April 2014

Academic Editor: Andrei Surguchov

Copyright © 2014 Tabish Qidwai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Poulter, “Bioorganic chemistry: a natural reunion of the physical and life sciences,” Journal of Organic Chemistry, vol. 74, no. 7, pp. 2631–2645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lombard and D. Moreira, “Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life,” Molecular Biology and Evolution, vol. 28, no. 1, pp. 87–99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Zhang, K. M. Watts, D. Hodge et al., “A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling,” Biochemistry, vol. 50, no. 17, pp. 3570–3577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Brown, M. Eberl, D. C. Crick, H. Jomaa, and T. Parish, “The nonmevalonate pathway of isoprenoid biosynthesis in Mycobacterium tuberculosis is essential and transcriptionally regulated by Dxs,” Journal of Bacteriology, vol. 192, no. 9, pp. 2424–2433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. J. Sangari, J. Pérez-Gil, L. Carretero-Paulet, J. M. García-Lobo, and M. Rodríguez-Concepción, “A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14081–14086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. M. Jordão, E. A. Kimura, and A. M. Katzin, “Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 1, pp. 134–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Eisenreich, A. Bacher, D. Arigoni, and F. Rohdich, “Biosynthesis of isoprenoids via the non-mevalonate pathway,” Cellular and Molecular Life Sciences, vol. 61, no. 12, pp. 1401–1426, 2004. View at Google Scholar · View at Scopus
  8. E. Oldfield, “Targeting isoprenoid biosynthesis for drug discovery: bench to bedside,” Accounts of Chemical Research, vol. 43, no. 9, pp. 1216–1226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wiesner, A. Reichenberg, S. Heinrich, M. Schlitzer, and H. Jomaa, “The plastid-like organelle of apicomplexan parasites as drug target,” Current Pharmaceutical Design, vol. 14, no. 9, pp. 855–871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Gisselberg, T. A. Dellibovi-Ragheb, K. A. Matthews, G. Bosch, and S. T. Prigge, “The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites,” PLOS Pathogens, vol. 9, no. 9, article e1003655, 2013. View at Google Scholar
  11. J. Wiesner and H. Jomaa, “Isoprenoid biosynthesis of the apicoplast as drug target,” Current Drug Targets, vol. 8, no. 1, pp. 3–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. I. McFadden, “The apicoplast,” Protoplasma, vol. 248, no. 4, pp. 641–650, 2011. View at Publisher · View at Google Scholar
  13. M. B. Cassera, F. C. Gozzo, F. L. D'Alexandri et al., “The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 51749–51759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. K. Singh and I. Ghosh, “Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum,” FEBS Letters, vol. 587, no. 17, pp. 2806–2817, 2013. View at Google Scholar
  15. H. Jomaa, J. Wiesner, S. Sanderbrand et al., “Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs,” Science, vol. 285, no. 5433, pp. 1573–1576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Umeda, N. Tanaka, Y. Kusakabe, M. Nakanishi, Y. Kitade, and K. T. Nakamura, “Crystallization and preliminary X-ray crystallographic study of 1-deoxy-d-xylulose 5-Phosphate reductoisomerase from Plasmodium falciparum,” Acta Crystallographica Section F: Structural Biology and Crystallization Communications, vol. 66, no. 3, pp. 330–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Cassera, E. F. Merino, V. J. Peres, E. A. Kimura, G. Wunderlich, and A. M. Katzin, “Effect of fosmidomycin on metabolic and transcript profiles of the methylerythritol phosphate pathway in Plasmodium falciparum,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 3, pp. 377–383, 2007. View at Google Scholar · View at Scopus
  18. E. A. Kimura, A. S. Couto, V. J. Peres, O. L. Casal, and A. M. Katzin, “N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum,” Journal of Biological Chemistry, vol. 271, no. 24, pp. 14452–14461, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Shams-Eldin, C. S. de Macedo, S. Niehus et al., “Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade,” Biochemical and Biophysical Research Communications, vol. 370, no. 3, pp. 388–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. D. Walter, “Plasmodium falciparum: inhibition of dolichol kinase by mefloquine,” Experimental Parasitology, vol. 62, no. 3, pp. 356–361, 1986. View at Google Scholar · View at Scopus
  21. A. S. Couto, E. A. Kimura, V. J. Peres, M. L. Uhrig, and A. M. Katzin, “Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units,” Biochemical Journal, vol. 341, no. 3, pp. 629–637, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. W. H. Witola, K. El Bissati, G. Pessi, C. Xie, P. D. Roepe, and C. B. Mamoun, “Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase- phosphoethanolamine-methyltransferase pathway and severe growth and survival defects,” Journal of Biological Chemistry, vol. 283, no. 41, pp. 27636–27643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Krishna, “Malaria,” British Medical Journal, vol. 315, no. 7110, pp. 730–732, 1997. View at Google Scholar · View at Scopus
  24. H. J. Vial, C. Ben Mamoun, and I. W. Sherman, “Plasmodium lipids: metabolism and function,” in Molecular Approaches to Malaria, pp. 327–352, ASM Press, Washington, DC, USA, 2005. View at Google Scholar
  25. G. G. Holz Jr., “Lipids and the malarial parasite,” Bulletin of the World Health Organization, vol. 55, no. 2-3, pp. 237–248, 1977. View at Google Scholar · View at Scopus
  26. G. Pessi and C. Ben Mamoun, “Pathways for phosphatidylcholine biosynthesis: targets and strategies for antimalarial drugs,” Future Medi Future Lipido, vol. 1, no. 2, pp. 173–180, 2006. View at Google Scholar
  27. C. S. De Macedo, M. L. Uhrig, E. A. Kimura, and A. M. Katzin, “Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum,” FEMS Microbiology Letters, vol. 207, no. 1, pp. 13–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Proteau, “1-Deoxy-D-xylulose 5-phosphate reductoisomerase: an overview,” Bioorganic Chemistry, vol. 32, no. 6, pp. 483–493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Steinbacher, J. Kaiser, W. Eisenreich, R. Huber, A. Bacher, and F. Rohdich, “Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-D-erythritol 4-phosphate synthase (IspC): implications for the catalytic mechanism and anti-malaria drug development,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18401–18407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. R. Goulart, E. A. Kimura, V. J. Peres, A. S. Couto, F. A. A. Duarte, and A. M. Katzin, “Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 7, pp. 2502–2509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Olepu, P. K. Suryadevara, K. Rivas et al., “2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 2, pp. 494–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Howe, M. Kelly, J. Jimah, D. Hodge, and A. R. Odom, “Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum,” Eukaryotic Cell, vol. 12, no. 2, pp. 215–223, 2013. View at Google Scholar
  33. S. Fletcher, C. G. Cummings, K. Rivas et al., “Potent, plasmodium-selective farnesyltransferase inhibitors that arrest the growth of malaria parasites: structure-activity relationships of ethylenediamine-analogue scaffolds and homology model validation,” Journal of Medicinal Chemistry, vol. 51, no. 17, pp. 5176–5197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Lethu, D. Bosc, E. Mouray, P. Grellier, and J. Dubois, “New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by solid-phase synthesis,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 1, pp. 163–171, 2013. View at Google Scholar
  35. J. Ohkanda, J. W. Lockman, K. Yokoyama et al., “Peptidomimetic inhibitors of protein farnesyltransferase show potent antimalarial activity,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 6, pp. 761–764, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. I. C. Moura, G. Wunderlich, M. L. Uhrig et al., “Limonene arrests parasite development and inhibits isoprenylation of proteins in Plasmodium falciparum,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 9, pp. 2553–2558, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. C. T. Behrendt, A. Kunfermann, V. Illarionova et al., “Reverse fosmidomycin derivatives against the antimalarial drug target IspC (Dxr),” Journal of Medicinal Chemistry, vol. 54, no. 19, pp. 6796–6802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Umeda, N. Tanaka, Y. Kusakabe, M. Nakanishi, Y. Kitade, and K. T. Nakamura, “Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum,” Scientific Reports, vol. 1, article no. 9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Ortmann, J. Wiesner, K. Silber, G. Klebe, H. Jomaa, and M. Schlitzer, “Novel deoxyxylulosephosphate-reductoisomerase inhibitors: fosmidomycin derivatives with spacious acyl residues,” Archiv der Pharmazie, vol. 340, no. 9, pp. 483–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Brucher, B. Illarionov, J. Held et al., “α-substituted β-Oxa isosteres of fosmidomycin: synthesis and biological evaluation,” Journal of Medicinal Chemistry, vol. 55, no. 14, pp. 6566–6575, 2012. View at Google Scholar
  41. K. Silber, P. Heidler, T. Kurz, and G. Klebe, “AFMoC enhances predictivity of 3D QSAR: a case study with DOXP-reductoisomerase,” Journal of Medicinal Chemistry, vol. 48, no. 10, pp. 3547–3563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Herforth, J. Wiesner, P. Heidler et al., “Antimalarial activity of N6-substituted adenosine derivatives—part 3,” Bioorganic and Medicinal Chemistry, vol. 12, no. 4, pp. 755–762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Escalante, A. A. Lal, and F. J. Ayala, “Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum,” Genetics, vol. 149, no. 1, pp. 189–202, 1998. View at Google Scholar · View at Scopus
  44. R. M. Graze, L. M. McIntyre, B. J. Main, M. L. Wayne, and S. V. Nuzhdin, “Regulatory divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-specific expression,” Genetics, vol. 183, no. 2, pp. 547–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Tiroshauth, S. Reikhav, A. A. Levy, and N. Barkai, “A yeast hybrid provides insight into the evolution of gene expression regulation,” Science, vol. 324, no. 5927, pp. 659–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Sinha, T. Qidwai, K. Kanchan et al., “Distinct cytokine profiles define clinical immune response to falciparum malaria in regions of high or low disease transmission,” European Cytokine Network, vol. 21, no. 4, pp. 232–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Sinha, G. N. Jha, P. Anand et al., “CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity,” Human Immunology, vol. 70, no. 4, pp. 244–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. E. Gisselberg, T. A. Dellibovi-Ragheb, K. A. Matthews, G. Bosch, and S. T. Prigge, “The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites,” PLOS Pathogens, vol. 9, no. 9, article e1003655, 2013. View at Google Scholar
  49. F. Mi-Ichi, K. Kita, and T. Mitamura, “Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth,” Parasitology, vol. 133, no. 4, pp. 399–410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Sparr, N. Purkayastha, B. Kolesinska et al., “Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine,” Antimicrob Agents Chemother, vol. 57, no. 10, pp. 4689–4698, 2013. View at Google Scholar
  51. A. M. Jansson, A. Więckowska, C. Björkelid et al., “DXR inhibition by potent mono- and disubstituted fosmidomycin analogues,” Journal of Medicinal Chemistry, vol. 56, no. 15, pp. 6190–6199, 2013. View at Google Scholar
  52. C. D. Rodrigues, M. Hannus, M. Prudêncio et al., “Host scavenger receptor SR-BI plays a dual role in the establishment of Malaria parasite liver infection,” Cell Host and Microbe, vol. 4, no. 3, pp. 271–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Yalaoui, T. Huby, J.-F. Franetich et al., “Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection,” Cell Host and Microbe, vol. 4, no. 3, pp. 283–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Torrentino-Madamet, J. Desplans, C. Travaillé, Y. Jammes, and D. Parzy, “Microaerophilic respiratory metabolism of Plasmodium falciparum mitochondrion as a drug target,” Current Molecular Medicine, vol. 10, no. 1, pp. 29–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Chakrabarti, T. D. Silva, J. Barger et al., “Protein farnesyltransferase and protein prenylation in Plasmodium falciparum,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 42066–42073, 2002. View at Publisher · View at Google Scholar · View at Scopus