Critical Care Research and Practice
 Journal metrics
Acceptance rate35%
Submission to final decision87 days
Acceptance to publication33 days
CiteScore2.100
Impact Factor-

Knowledge, Attitude, and Performance of ICU, CCU, and Emergency Wards Nurses in Kermanshah, Iran, regarding Organ Donation

Read the full article

 Journal profile

Critical Care Research and Practice publishes articles related to anesthesiology, perioperative and critical care medicine, and the integration of intraoperative management in preparation for postoperative critical care management.

 Editor spotlight

Critical Care Research and Practice maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Lactate Arterial-Central Venous Gradient among COVID-19 Patients in ICU: A Potential Tool in the Clinical Practice

Objective. In physiological conditions, arterial blood lactate concentration is equal to or lower than central venous blood lactate concentration. A reversal in this rate (i.e., higher lactate concentration in central venous blood), which could reflect a derangement in the mitochondrial metabolism of lung cells induced by inflammation, has been previously reported in patients with ARDS but has been never explored in COVID-19 patients. The aim of this study was to explore if the COVID-19-induced lung cell damage was mirrored by an arterial lactatemia higher than the central venous one; then if the administration of anti-inflammatory therapy (i.e., canakinumab 300 mg subcutaneous) could normalize such abnormal lactate a-cv difference. Methods. A prospective cohort study was conducted, started on March 25, 2020, for a duration of 10 days, enrolling 21 patients affected by severe COVID-19 pneumonia undergoing mechanical ventilation consecutively admitted to the ICU of the Rimini Hospital, Italy. Arterial and central venous blood samples were contemporarily collected to calculate the difference between arterial and central venous lactate (Delta a-cv lactate) concentrations within 24 h from tracheal intubation (T0) and 24 hours after canakinumab administration (T1). Results. At T0, 19 of 21 (90.5%) patients showed a pathologic Delta a-cv lactate (median 0.15 mmol/L; IQR 0.07–0.25). In the 13 patients undergoing canakinumab administration, at T1, Delta a-cv lactate decreased in 92.3% of cases, the decrease being statistically significant (T0: median 0.24, IQR 0.09–0.31 mmol/L; T1: median −0.01, IQR −0.08–0.04 mmol/L; ). Conclusion. A reversed Delta a-cv lactate might be interpreted as one of the effects of COVID-19-related cytokine storm, which could reflect a derangement in the mitochondrial metabolism of lung cells induced by severe inflammation or other uncoupling mediators. In addition, Delta a-cv lactate decrease might also reflect the anti-inflammatory activity of canakinumab. Our preliminary findings need to be confirmed by larger outcome studies.

Research Article

Effect of Exogenous Melatonin Administration in Critically Ill Patients on Delirium and Sleep: A Randomized Controlled Trial

Introduction. Sleep deprivation is a contributor for delirium in intensive care. Melatonin has been proposed as a pharmacological strategy to improve sleep, but studies have shown that the increase in plasma levels of melatonin do not correlate to a beneficial clinical effect; in addition, melatonin’s short half-life may be a major limitation to achieving therapeutic levels. This study applies a previously published novel regimen of melatonin with proven sustained levels of melatonin during a 12 h period. In this study, the aim is to determine if such melatonin dosing positively influences on the sleep architecture and the incidence of delirium in intensive care. Methods. Single center, randomized control trial with consecutive recruitment over 5 years. Medical and surgical patients were in a recovery phase, all weaning from mechanical ventilation. Randomized allocation to placebo or enteral melatonin, using a previously described regimen (loading dose of 3 mg at 21 h, followed by 0.5 mg hourly maintenance dose until 03am through a nasogastric tube). Sleep recordings were performed using polysomnogram at baseline (prior to intervention) and the third night on melatonin (postintervention recording). Delirium was assessed using the Richmond Agitation and the Confusion Assessment Method Scales. Environmental light and noise levels were recorded using a luxmeter and sound meter. Results. 80 patients were screened, but 33 were recruited. Sleep studies showed no statistical differences on arousal index or length of sleep. Baseline delirium scores showed no difference between groups when compared to postintervention scores. RASS scores were 1 in both groups at baseline, compared to zero (drug group) and 0.5 (placebo group) posttreatment. CAM scores were zero (drug group) and 1 (placebo group) at baseline, compared to zero (in both groups) postintervention. Conclusion. High levels of plasma melatonin during the overnight period of intensive care cohort patients did not improve sleep nor decreased the prevalence of delirium. This trial is registered with Anzctr.org.au/ACTRN12620000661976.aspx.

Research Article

Subclinical Left Ventricular Systolic Dysfunction in Patients with Septic Shock Based on Sepsis-3 Definition: A Speckle-Tracking Echocardiography Study

Introduction. Left ventricular dysfunction is quite common in septic shock. Speckle-tracking echocardiography (STE) is a novel, highly sensitive method for assessing left ventricular function, capable of detecting subclinical myocardial dysfunction, which is not identified with conventional echocardiography. We sought to evaluate subclinical left ventricular systolic function in patients with septic shock using speckle-tracking echocardiography. Methods. From May 2017 to December 2018, patients aged ≥18 years admitted to the intensive care unit with the diagnosis of sepsis and septic shock based on the sepsis-3 definition were included. Patients with other causes of cardiac dysfunction were excluded. Transthoracic echocardiography was performed for all the patients within 24 hours of diagnosis. Left ventricular systolic function was assessed using conventional echocardiography and speckle-tracking echocardiography. Results. Patients with septic shock (n = 90) (study group) and 37 matched patients with sepsis but no septic shock (control group) were included. Left ventricular ejection fraction (LVEF) by conventional echocardiography showed no significant difference between two groups (58.2 ± 9.9 vs. 58.6 ± 8.3, ). The global longitudinal strain (GLS) by STE was significantly reduced in patients with septic shock compared with that in the control (−14.6 ± 3.3 vs. −17.1 ± 3.3, ). Based on the cutoff value of GLS ≥ −15% for the definition of subclinical left ventricular systolic dysfunction, this dysfunction was detected in 50 patients with septic shock (55.6%) and in 6 patients in the control group (16.2%) (). Conclusions. Speckle-tracking echocardiography can detect early subclinical left ventricular systolic dysfunction via the left ventricular global longitudinal strain compared with conventional echocardiographic parameters in patients with septic shock.

Research Article

Bioreactance-Based Noninvasive Fluid Responsiveness and Cardiac Output Monitoring: A Pilot Study in Patients with Aneurysmal Subarachnoid Hemorrhage and Literature Review

Management of volume status, arterial blood pressure, and cardiac output are core elements in approaching the patients with aneurysmal subarachnoid hemorrhage (SAH). For the prevention and treatment of delayed cerebral ischemia (DCI), euvolemia is advocated and caution is made towards the avoidance of hypervolemia. Induced hypertension and cardiac output augmentation are the mainstays of medical management during active DCI, whereas the older triple-H paradigm has fallen out of favor due to lack of demonstrable physiological or clinical benefits and serious concern for adverse effects such as pulmonary edema and multiorgan system dysfunction. Furthermore, insight into clinical hemodynamics of patients with SAH becomes salient when one considers the frequently associated cardiac and pulmonary manifestations of the disease such as SAH-associated cardiomyopathy and neurogenic pulmonary edema. In terms of fluid and volume targets, less attention has been paid to dynamic markers of fluid responsiveness despite the well-established, in the general critical care literature, superiority of these as compared to traditionally used static markers such as central venous pressure (CVP). Based on this literature and sound pathophysiologic reasoning, reliance on static markers (such as CVP) is unjustified when one attempts to assess strategies augmenting stroke volume (SV), arterial blood pressure, and oxygen delivery. There are several options for continuous bedside cardiorespiratory monitoring and optimization of SAH patients. We, here, review a noninvasive monitoring technique based on thoracic bioreactance and focusing on continuous cardiac output and fluid responsiveness markers.

Research Article

The Validity of SOFA Score to Predict Mortality in Adult Patients with Cardiogenic Shock on Venoarterial Extracorporeal Membrane Oxygenation

Background. Venoarterial ECMO is increasingly used in resuscitation of adult patients with cardiogenic shock with variable mortality reports worldwide. Our objectives were to study the variables associated with hospital mortality in adult patients supported with VA-ECMO and to determine the validity of repeated assessments of those patients by the Sequential Organ Failure Assessment (SOFA) score for prediction of hospital mortality. We retrospectively studied adult patients admitted to the cardiac surgical critical care unit with cardiogenic shock supported with VA-ECMO from January 2015 to August 2019 in our tertiary care hospital. Results. One hundred and six patients supported with VA-ECMO were included in our study with in-hospital mortality of 56.6%. The mean age of studied patients was 40.2 ± 14.4 years, and the patients were mostly males (69.8%) with a mean BMI of 26.5 ± 7 without statistically significant differences between survivors and nonsurvivors. Presence of CKD, chronic atrial fibrillation, and cardiac surgeries was significantly more frequent in the nonsurvivors group. The nonsurvivors had more frequent AKI (), more haemodialysis use (), more gastrointestinal bleeding (), more ICH (), and fewer ICU days () compared to the survivors group. The mean peak blood lactate level was 11 ± 3 vs 16.7 ± 3.3, , and the mean lactate level after 24 hours of ECMO initiation was 2.2 ± 0.9 vs 7.9 ± 5.7, , in the survivors and nonsurvivors, respectively. Initial SOFA score ≥13 measured upon ICU admission had a 85% sensitivity and 73.9% specificity for predicting hospital mortality [AUROC = 0.862, 95% CI: 0.791–0.932; ] with 81% PPV, 79.1% NPV, and 80.2% accuracy while SOFA score ≥13 at day 3 had 100% sensitivity and 91.3% specificity for predicting mortality with 93.8% PPV, 100% NPV, and 96.2% accuracy [AUROC = 0.995, 95% CI: 0.986–1; ]. The ∆1 SOFA (3-1) ≥2 had 95% sensitivity and 93.5% specificity for predicting hospital mortality [AUROC = 0.958, 95% CI: 0.913–1; ] with 95% PPV, 93.5% NPV, and 94.3% accuracy. SOFA score ≥15 at day 5 had 98% sensitivity and 100% specificity for predicting mortality with 99% accuracy [AUROC = 0.994, 95% CI: 0.982–1; ]. The ∆2 SOFA (5-1) ≥2 had 90% sensitivity and 97.8% specificity for predicting hospital mortality [AUROC = 0.958, 95% CI: 0.909–1; ] with 97.8% PPV, 90% NPV, and 94.8% accuracy. Multivariable regression analysis revealed that increasing ∆1 SOFA score (OR = 2.506, 95% CI: 1.681–3.735, ) and increasing blood lactate level (OR = 1.388, 95% CI: 1.015–1.898, ) were significantly associated with hospital mortality after VA-ECMO support for adults with cardiogenic shock. Conclusion. The use of VA-ECMO in adult patients with cardiogenic shock is still associated with high mortality. Serial evaluation of those patients with SOFA score during the first few days of ECMO support is a good predictor of hospital mortality. Increase in SOFA score after 48 hours and hyperlactataemia are significantly associated with increased hospital mortality.

Research Article

Maximal Glycemic Difference, the Possible Strongest Glycemic Variability Parameter to Predict Mortality in ICU Patients

Background. This retrospective study aimed to determine the correlation of blood glucose and glycemic variability with mortality and to identify the strongest glycemic variability parameter for predicting mortality in critically ill patients. Methods. A total of 528 patients admitted to the medical intensive care unit were included in this study. Blood glucose levels during the first 24 hours of admission were recorded and calculated to determine the glycemic variability. Significant glycemic variability parameters, including the standard deviation, coefficient of variation, maximal blood glucose difference, and J-index, were subsequently compared between intensive care unit survivors and nonsurvivors. A binary logistic regression was performed to identify independent factors associated with mortality. To determine the strongest glycemic variability parameter to predict mortality, the area under the receiver operating characteristic of each glycemic variability parameter was determined, and a pairwise comparison was performed. Results. Among the 528 patients, 17.8% (96/528) were nonsurvivors. Both survivor and nonsurvivor groups were clinically comparable. However, nonsurvivors had significantly higher median APACHE-II scores (23 [21, 27] vs. 18 [14, 22];  < 0.01) and a higher mechanical ventilator support rate (97.4% vs. 74.9%;  < 0.01). The mean blood glucose level and significant glycemic variability parameters were higher in nonsurvivors than in survivors. The maximal blood glucose difference yielded a similar power to the coefficient of variation ( = 0.21) but was significantly stronger than the standard deviation ( = 0.005) and J-index ( = 0.006). Conclusions. Glycemic variability was independently associated with intensive care unit mortality. Higher glycemic variability was identified in the nonsurvivor group regardless of preexisting diabetes mellitus. The maximal blood glucose difference and coefficient of variation of the blood glucose were the two strongest parameters for predicting intensive care unit mortality in this study.

Critical Care Research and Practice
 Journal metrics
Acceptance rate35%
Submission to final decision87 days
Acceptance to publication33 days
CiteScore2.100
Impact Factor-
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.