Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2012, Article ID 506382, 6 pages
http://dx.doi.org/10.1155/2012/506382
Clinical Study

High-Flow Nasal Interface Improves Oxygenation in Patients Undergoing Bronchoscopy

1Department of Perioperative Medicine, Intensive Care and Emergency, Cattinara Hospital, Trieste University School of Medicine, Strada di Fiume 447, 34149 Trieste, Italy
2Department of Pneumology, Cattinara Hospital, 34149 Trieste, Italy
3Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, 21949-900 RJ Rio de Janeiro, Brazil

Received 26 January 2012; Revised 22 March 2012; Accepted 23 March 2012

Academic Editor: Daniel De Backer

Copyright © 2012 Umberto Lucangelo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Albertini, J. H. Harrel, and K. M. Moser, “Letter: hypoxemia during fiberoptic bronchoscopy,” Chest, vol. 65, no. 1, pp. 117–118, 1974. View at Google Scholar · View at Scopus
  2. L. Papazian, H. G. Colt, F. Scemama, C. Martin, and F. Gouin, “Effects of consecutive protected specimen brushing and bronchoalveolar lavage on gas exchange and hemodynamics in ventilated patients,” Chest, vol. 104, no. 5, pp. 1548–1552, 1993. View at Google Scholar · View at Scopus
  3. G. P. Randazzo and A. F. Wilson, “Cardiopulmonary changes during flexible fiberoptic bronchoscopy,” Respiration, vol. 33, no. 2, pp. 143–149, 1976. View at Google Scholar · View at Scopus
  4. Y. Matsushima, R. L. Jones, and E. G. King, “Alterations in pulmonary mechanics and gas exchange during routine fiberoptic bronchoscopy,” Chest, vol. 86, no. 2, pp. 184–188, 1984. View at Google Scholar · View at Scopus
  5. M. Pirozynski, P. Sliwinski, L. Radwan, and J. Zielinski, “Bronchoalveolar lavage: comparison of three commonly used procedures,” Respiration, vol. 58, no. 2, pp. 72–76, 1991. View at Google Scholar · View at Scopus
  6. W. F. Fang, Y. C. Chen, Y. H. Chung et al., “Predictors of oxygen desaturation in patients undergoing diagnostic bronchoscopy,” Chang Gung Medical Journal, vol. 29, no. 3, pp. 306–312, 2006. View at Google Scholar · View at Scopus
  7. P. Montravers, R. Gauzit, M. C. Dombret, F. Blanchet, and J. M. Desmonts, “Cardiopulmonary effects of bronchoalveolar lavage in critically ill patients,” Chest, vol. 104, no. 5, pp. 1541–1547, 1993. View at Google Scholar · View at Scopus
  8. D. L. Shrader and S. Lakshminarayan, “The effect of fiberoptic bronchoscopy on cardiac rhythm,” Chest, vol. 73, no. 6, pp. 821–824, 1978. View at Google Scholar · View at Scopus
  9. B. A. Shapiro, W. T. Peruzzi, and R. Kozlowski-Templin, Clinical Application of Blood Gases, Mosby, St. Louis, Mo, USA, 5th edition, 1994.
  10. J. B. Waugh and W. M. Granger, “An evaluation of 2 new devices for nasal high-flow gas therapy,” Respiratory care, vol. 49, no. 8, pp. 902–906, 2004. View at Google Scholar · View at Scopus
  11. O. Roca, J. Riera, F. Torres, and J. R. Masclans, “High-flow oxygen therapy in acute respiratory failure,” Respiratory Care, vol. 55, no. 4, pp. 408–413, 2010. View at Google Scholar · View at Scopus
  12. R. L. Parke, S. P. McGuinness, and M. L. Eccleston, “A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients,” Respiratory Care, vol. 56, no. 3, pp. 265–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Carratalá Perales, P. Llorens, B. Brouzet et al., “High-flow therapy via nasal cannula in acute heart failure,” Revista Espanola de Cardiologia, vol. 64, pp. 723–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Locke, M. R. Wolfson, T. H. Shaffer, S. D. Rubenstein, and J. S. Greenspan, “Inadvertent administration of positive end-distending pressure during nasal cannula flow,” Pediatrics, vol. 91, no. 1, pp. 135–138, 1993. View at Google Scholar · View at Scopus
  15. J. G. Saslow, Z. H. Aghai, T. A. Nakhla et al., “Work of breathing using high-flow nasal cannula in preterm infants,” Journal of Perinatology, vol. 26, no. 8, pp. 476–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Sreenan, R. P. Lemke, A. Hudson-Mason, and H. Osiovich, “High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure,” Pediatrics, vol. 107, no. 5, pp. 1081–1083, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Parke, S. McGuinness, and M. Eccleston, “Nasal high-flow therapy delivers low level positive airway pressure,” British Journal of Anaesthesia, vol. 103, no. 6, pp. 886–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Groves and A. Tobin, “High flow nasal oxygen generates positive airway pressure in adult volunteers,” Australian Critical Care, vol. 20, no. 4, pp. 126–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Curran-Everett and D. J. Benos, “Guidelines for reporting statistics in journals published by the American Physiological Society,” American Journal of Physiology, vol. 28, pp. 85–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Benjamin and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society: Series B, vol. 57, no. 1, pp. 289–300, 1995. View at Google Scholar
  21. T. Hothorn, M. A. Van De Wiel, K. Hornik, and A. Zeileis, “Implementing a class of permutation tests: the coin package,” Journal of Statistical Software, vol. 28, no. 8, pp. 1–23, 2008. View at Google Scholar · View at Scopus
  22. B. B. Brach, G. G. Escano, J. H. Harrell, and K. M. Moser, “Ventilation perfusion alterations induced by fiberoptic bronchoscopy,” Chest, vol. 69, no. 3, pp. 335–337, 1976. View at Google Scholar · View at Scopus
  23. A. M. Price, C. Plowright, A. Makowski, and B. Misztal, “Using a high-flow respiratory system (Vapotherm) within a high dependency setting,” Nursing in Critical Care, vol. 13, no. 6, pp. 298–304, 2008. View at Google Scholar · View at Scopus
  24. K. Dysart, T. L. Miller, M. R. Wolfson, and T. H. Shaffer, “Research in high flow therapy: mechanisms of action,” Respiratory Medicine, vol. 103, no. 10, pp. 1400–1405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Gilbert and J. F. Keighley, “The arterial/alveolar oxygen tension ratio. An index of gas exchange applicable to varying inspired oxygen concentrations,” American Review of Respiratory Disease, vol. 109, no. 1, pp. 142–145, 1974. View at Google Scholar · View at Scopus
  26. G. C. Carroll, “Misapplication of alveolar gas equation,” New England Journal of Medicine, vol. 312, no. 9, p. 586, 1985. View at Google Scholar · View at Scopus
  27. J. Kernick and J. Magarey, “What is the evidence for the use of high flow nasal cannula oxygen in adult patients admitted to critical care units? A systematic review,” Australian Critical Care, vol. 23, no. 2, pp. 53–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. B. Wettstein, D. C. Shelldedy, and J. I. Peters, “Delivered oxygen concentrations using low-flow and high-flow nasal cannulas,” Respiratory Care, vol. 50, pp. 604–609, 2005. View at Google Scholar