Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2012, Article ID 539412, 13 pages
http://dx.doi.org/10.1155/2012/539412
Review Article

The End-Organ Impairment in Liver Cirrhosis: Appointments for Critical Care

1Liver Transplantation Centre, Hospital Curry Cabral, 1069-166 Lisbon, Portugal
2Critical Care and Emergency CGU, Puerto Real University Hospital, 11510 Cadiz, Spain
3CEDOC, Faculdade de Ciências Médicas, 1169-056 Lisbon, Portugal
4Intensive Care Unit, Hospital Curry Cabral, 1069-166 Lisbon, Portugal

Received 19 October 2011; Revised 24 February 2012; Accepted 13 March 2012

Academic Editor: Mark T. Keegan

Copyright © 2012 Antonio Figueiredo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. T. Sørensen, A. M. Thulstrup, L. Mellemkjar et al., “Long-term survival and cause-specific mortality in patients with cirrhosis of the liver: a nationwide cohort study in Denmark,” Journal of Clinical Epidemiology, vol. 56, no. 1, pp. 88–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Schuppan and N. H. Afdhal, “Liver cirrhosis,” The Lancet, vol. 371, no. 9615, pp. 838–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Volk, R. S. Tocco, J. Bazick, M. O. Rakoski, and A. S. Lok, “Hospital readmissions among patients with decompensated cirrhosis,” American Journal of Gastroenterology, vol. 107, pp. 247–252, 2012. View at Publisher · View at Google Scholar
  4. K. Fukumitsu, H. Yagi, and A. Soto-Gutierrez, “Bioengineering in organ transplantation: targeting the liver,” Transplantation Proceedings, vol. 43, no. 6, pp. 2137–2138, 2011. View at Google Scholar
  5. K. Barber, S. Madden, J. Allen, D. Collett, J. Neuberger, and A. Gimson, “United Kingdom liver transplant selection and allocation working party. Elective liver transplant list mortality: development of a United Kingdom end-stage liver disease score,” Transplantation, vol. 92, no. 4, pp. 469–476, 2011. View at Google Scholar
  6. S. A. Alqahtani, T. R. Fouad, and S. S. Lee, “Cirrhotic cardiomyopathy,” Seminars in Liver Disease, vol. 28, no. 1, pp. 59–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Uptodate, “Diagnostic approach to the patient with cirrhosis,” http://www.uptodate.com/, Uptodate, 2011.
  8. J. L. Vincent and T. Gustot, “Sepsis and cirrhosis: many similarities,” Acta Gastro-Enterologica Belgica, vol. 73, no. 4, pp. 472–478, 2010. View at Google Scholar · View at Scopus
  9. Y. Iwakiri and R. J. Groszmann, “The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule,” Hepatology, vol. 43, no. 2, pp. S121–S131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Lee, J. Marty, J. Mantz, E. Samain, A. Braillon, and D. Lebrec, “Desensitization of myocardial β-adrenergic receptors in cirrhotic rats,” Hepatology, vol. 12, no. 3, pp. 481–485, 1990. View at Google Scholar · View at Scopus
  11. Z. Ma, J. B. Meddings, and S. S. Lee, “Membrane physical properties determine cardiac β-adrenergic receptor function in cirrhotic rats,” American Journal of Physiology, vol. 267, no. 1, pp. G87–G93, 1994. View at Google Scholar · View at Scopus
  12. A. R. Manny, S. Ippolito, R. llosson, and K. P. Moore, “Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis,” Hepatology, vol. 43, no. 4, pp. 847–856, 2006. View at Publisher · View at Google Scholar
  13. S. Bátkai, Z. Járai, J. A. Wagner et al., “Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis,” Nature Medicine, vol. 7, no. 7, pp. 827–832, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Kalambokis, P. Korantzopoulos, S. A. Nikas, A. Theodorou, and E. V. Tsianos, “Significant improvement of portopulmonary hypertension after 1-week terlipressin treatment,” Journal of Hepatology, vol. 48, no. 4, pp. 678–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Pimenta, C. Paulo, A. Gomes, S. Silva, F. Rocha-Gonçalves, and P. Bettencourt, “B-type natriuretic peptide is related to cardiac function and prognosis in hospitalized patients with decompensated cirrhosis,” Liver International, vol. 30, no. 7, pp. 1059–1066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Padillo, P. Rioja, M. C. Muñoz-Villanueva et al., “BNP as marker of heart dysfunction in patients with liver cirrhosis,” European Journal of Gastroenterology and Hepatology, vol. 22, no. 11, pp. 1331–1336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. N. Khan, H. Al-Jahdali, K. Abdullah, K. L. Irion, Q. Sabih, and A. Gouda, “Pulmonary vascular complications of chronic liver disease: pathophysiology, imaging, and treatment,” Annals of Thoracic Medicine, vol. 6, no. 2, pp. 57–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Krowka and D. A. Cortese, “Hepatopulmonary syndrome: current concepts in diagnostic and therapeutic considerations,” Chest, vol. 105, no. 5, pp. 1528–1537, 1994. View at Google Scholar · View at Scopus
  19. H. J. Kowalski and W. H. Abelmann, “The cardiac output at rest in Laennec's cirrhosis,” The Journal of Clinical Investigation, vol. 32, no. 10, pp. 1025–1033, 1953. View at Google Scholar · View at Scopus
  20. S. A. Alqahtani, T. R. Fuad, and S. S. Lee, “Cirrhotic Cardiomyopathy,” Seminars in Liver Disease, vol. 28, no. 1, pp. 59–69, 2008. View at Google Scholar
  21. R. F. Lee, T. K. Glenn, and S. S. Lee, “Cardiac dysfunction in cirrhosis,” Best Practice and Research, vol. 21, no. 1, pp. 125–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. R. Fouad, W. M. Abdel-Razek, K. W. Burak, V. G. Bain, and S. S. Lee, “Prediction of cardiac complications after liver transplantation,” Transplantation, vol. 87, no. 5, pp. 763–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Pozzi, E. Redaelli, L. Ratti et al., “Time-course of diastolic dysfunction in different stages of chronic HCV related liver diseases,” Minerva Gastroenterologica e Dietologica, vol. 51, no. 2, pp. 179–186, 2005. View at Google Scholar · View at Scopus
  24. J. Alexander, P. Mishra, N. Desai, S. Ambadekar, B. Gala, and P. Sawant, “Cirrhotic cardiomyopathy: Indian scenario,” Journal of Gastroenterology and Hepatology, vol. 22, no. 3, pp. 395–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Milani, R. Zaccaria, G. Bombardieri, A. Gasbarrini, and P. Pola, “Cirrhotic cardiomyopathy,” Digestive and Liver Disease, vol. 39, no. 6, pp. 507–515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Wong, N. Girgrah, J. Graba, Y. Allidina, P. Liu, and L. Blendis, “The cardiac response to exercise in cirrhosis,” Gut, vol. 49, no. 2, pp. 268–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Torregrosa, S. Aguadé, L. Dos et al., “Cardiac alterations in cirrhosis: reversibility after liver transplantation,” Journal of Hepatology, vol. 42, no. 1, pp. 68–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Pozzi, S. Carugo, G. Boari et al., “Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites,” Hepatology, vol. 26, no. 5, pp. 1131–1137, 1997. View at Google Scholar · View at Scopus
  29. A. Zambruni, F. Trevisani, P. Caraceni, and M. Bernardi, “Cardiac electrophysiological abdnormalities in patients with cirrosis,” Journal of Hepatology, vol. 44, no. 5, pp. 994–1002, 2006. View at Google Scholar
  30. M. S. Mandell, J. A. Lindenfeld, M. Y. Tsou, and M. Zimmerman, “Cardiac evaluation of liver transplant candidates,” World Journal of Gastroenterology, vol. 14, no. 22, pp. 3445–3451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. R. Sun, Y. Wang, B. Y. Wang, J. Tong, D. Zhang, and B. Chang, “Relationship between model for end-stage liver disease score and left ventricular function in patients with end-stage liver disease,” Hepatobiliary and Pancreatic Diseases International, vol. 10, no. 1, pp. 50–54, 2011. View at Google Scholar · View at Scopus
  32. J. S. Bal and P. J. Thuluvath, “Prolongation of QTc interval: relationship with etiology and severity of liver disease, mortality and liver transplantation,” Liver International, vol. 23, no. 4, pp. 243–248, 2003. View at Google Scholar · View at Scopus
  33. L. G. Umphrey, R. T. Hurst, M. F. Eleid et al., “Preoperative dobutamine stress echocardiographic findings and subsequent short-term adverse cardiac events after orthotopic liver trans plantation,” Liver transplantation, vol. 14, pp. 886–892, 2008. View at Google Scholar
  34. M. E. Harinstein, J. D. Flaherty, A. H. Ansari et al., “Predictive value of dobutamine stress echocardiography for coronary artery disease detection in liver transplant candidates,” American Journal of Transplantation, vol. 8, no. 7, pp. 1523–1528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Aaroudi, H. Aggarwal, F. Igbal, J. Heo, and A. E. Iskandrian, “Left ventricular dyssychrony in patients with LC,” Journal of Nuclear Cardiology, vol. 18, no. 3, pp. 451–455, 2011. View at Google Scholar
  36. C. Gazzera, D. Roghi, F. Valle et al., “Fifteen years' experience with transjugular intrahepatic portosystemic shunt (TIPS) using bare stents: retrospective review of clinical and technical aspects,” Radiology, Medical Imaging, vol. 114, no. 1, pp. 83–94, 2009. View at Google Scholar
  37. A. Kovacs, M. Schepke, J. Heller et al., “Short-term effects of trans jugular intrahepatic shunt on cardiac function assessed by cardiac MRI: preliminary results,” CardioVascular and Intervention al Radiology, vol. 33, no. 2, pp. 290–296, 2010. View at Google Scholar
  38. A. C. Braverman, M. A. Steiner, D. Picus, and H. White, “High-output congestive heart failure following transjugular intrahepatic portal-systemic shunting,” Chest, vol. 107, no. 5, pp. 1467–1469, 1995. View at Google Scholar · View at Scopus
  39. G. Therapondos, A. D. Flapan, J. N. Plevris, and P. C. Hayes, “Cardiac morbidity and mortality related to orthotopic liver transplantation,” Liver Transplantation, vol. 10, no. 12, pp. 1441–1453, 2005. View at Google Scholar
  40. C. P. Snowden, T. Hughes, J. Rose, and D. R. D. Roberts, “Pulmonary edema in patients after liver transplantation,” Liver Transplantation, vol. 6, no. 4, pp. 466–470, 2000. View at Google Scholar · View at Scopus
  41. G. W. Dec, N. Kondo, M. L. Farrell, J. Dienstag, A. B. Cosimi, and M. J. Semigran, “Cardiovascular complications following liver transplantation,” Clinical Transplantation, vol. 9, no. 6, pp. 463–471, 1995. View at Google Scholar · View at Scopus
  42. W. G. Rector Jr, O. Adair, K. F. Hossack, and S. Rainguet, “Atrial volume in cirrhosis: relationship to blood volume and plasma concentration of atrial natriuretic factor,” Gastroenterology, vol. 99, no. 3, pp. 766–670, 1990. View at Google Scholar
  43. F. Wong, S. Siu, P. Liu, and L. M. Blendis, “Brain natriuretic peptide: is it a predictor of cardiornyopathy in cirrhosis?” Clinical Science, vol. 101, no. 6, pp. 621–628, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Henriksen, J. P. Gøtze, S. Fuglsang, E. Christensen, F. Bendtsen, and S. Møller, “Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease,” Gut, vol. 52, no. 10, pp. 1511–1517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Pateron, P. Beyne, T. Laperche et al., “Elevated circulating cardiac troponin I in patients with cirrhosis,” Hepatology, vol. 29, no. 3, pp. 640–643, 1999. View at Google Scholar
  46. M. Ruiz-Bailén, F. J. Romero-Bermejo, L. Rucabado-Aguilar et al., “Myocardial dysfunction in the critically ill patient: is it really reversible?” International Journal of Cardiology, vol. 145, no. 3, pp. 615–616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. G. Friedrich, “Tissue characterization of acute myocardial infarction and myocarditis by cardiac magnetic resonance,” Journal of the American College of Cardiology, vol. 1, no. 5, pp. 652–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Goitein, S. Matetzky, R. Beinart et al., “Acute myocarditis: noninvasive evaluation with cardiac MRI and transthoracic echocardiography,” American Journal of Roentgenology, vol. 192, no. 1, pp. 254–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Valeriano, S. Funaro, R. Lionetti et al., “Modification of cardiac function in cirrhotic patients with and without ascites,” American Journal of Gastroenterology, vol. 95, no. 11, pp. 3200–3205, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. R. D. Abeles, D. L. Shawcross, and G. Auzinger, “E/A ratio alone cannot reliably diagnose diastolic dysfunction in the assessment before and after TIPS,” Gut, vol. 56, no. 11, p. 1642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. U. B. Andersen, S. Møller, F. Bendtsen, and J. H. Henriksen, “Cardiac output determined by echocardiography in patients with cirrhosis: comparison with the indicator dilution technique,” European Journal of Gastroenterology & Hepatology, vol. 15, no. 5, pp. 503–507, 2003. View at Google Scholar
  52. K. Kazankov, P. Holland-Fischer, N. H. Andersen et al., “Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging,” Liver International, vol. 31, no. 4, pp. 534–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Møller and J. H. Henriksen, “Cirrhotic cardiomyopathy,” Journal of Hepatology, vol. 53, no. 1, pp. 179–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Gaskari, H. Honar, and S. S. Lee, “Therapy insight: cirrhotic cardiomyopathy,” Nature Clinical Practice Gastroenterology & Hepatology, vol. 3, no. 6, pp. 329–337, 2006. View at Google Scholar
  55. C. G. Brilla, L. S. Matsubara, and K. T. Weber, “Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension,” American Journal of Cardiology, vol. 71, no. 3, 1993. View at Google Scholar · View at Scopus
  56. R. Bos, N. Mougenot, F. indjiL et al., “Inhibition of catecholamine-induced cardiac fibrosis by an aldosterone antagonist,” Journal of Cardiovascular Pharmacology, vol. 45, pp. 8–13, 2005. View at Google Scholar
  57. A. Zambruni, F. Trevisani, A. Di Micoli et al., “Effect of chronic beta-blockade on QT interval in patients with liver cirrhosis,” Journal of Hepatology, vol. 48, no. 3, pp. 415–421, 2008. View at Google Scholar
  58. J. G. Abraldes, A. Albillos, R. Bañares et al., “Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial,” Gastroenterology, vol. 136, no. 5, pp. 1651–1658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. V. Catalina, J. Barrio, F. Anaya et al., “Hepatic and systemic haemodynamic changes after MARS in patients with acute on chronic liver failure,” Liver International, vol. 23, no. 3, pp. 39–43, 2003. View at Google Scholar · View at Scopus
  60. S. Sen, R. P. Mookerjee, L. M. Cheshire, N. A. Davies, R. Williams, and R. Jalan, “Albumin dialysis reduces portal pressure acutely in patients with severe alcoholic hepatitis,” Journal of Hepatology, vol. 43, no. 1, pp. 142–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Ramsay, “Portopulmonary hypertension and right heart failure in patients with cirrhosis,” Current Opinion in Anaesthesiology, vol. 23, no. 2, pp. 145–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. B. D. Robalino and D. S. Moodie, “Association between primary pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations,” Journal of the American College of Cardiology, vol. 17, no. 2, pp. 492–498, 1991. View at Google Scholar · View at Scopus
  63. M. Porres-Aguilar, M. J. Zuckerman, J. B. Figueroa-Casas, and M. J. Krowka, “Portopulmonary hypertension: state of the art,” Annals of Hepatology, vol. 7, no. 4, pp. 321–330, 2008. View at Google Scholar · View at Scopus
  64. M. J. Krowka and D. A. Cortese, “Hepatopulmonary syndrome: an evolving perspective in the era of liver transplantation,” Hepatology, vol. 11, no. 1, pp. 138–142, 1990. View at Google Scholar · View at Scopus
  65. K. L. Swanson, R. H. Wiesner, and M. J. Krowka, “Natural history of hepatopulmonary syndrome: impact of liver transplantation,” Hepatology, vol. 41, no. 5, pp. 1122–1129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Schenk, V. Fuhrmann, C. Madl et al., “Hepatopulmonary syndrome: prevalence and predictive value of various cut offs for arterial oxygenation and their clinical consequences,” Gut, vol. 51, no. 6, pp. 853–859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Lenci, A. Alvior, T. M. Manzia et al., “Saline contrast echocardiography in patients with hepatopulmonary syndrome awaiting liver transplantation,” Journal of the American Society of Echocardiography, vol. 22, no. 1, pp. 89–94, 2009. View at Google Scholar
  68. M. J. Krowka, E. R. Dickson, and D. A. Cortese, “Hepatopulmonary syndrome: clinical observations and lack of therapeutic response to somatostatin analogue,” Chest, vol. 104, no. 2, pp. 515–521, 1993. View at Google Scholar · View at Scopus
  69. K. M. Selim, E. A. Akriviadis, E. Zuckerman, D. Chen, and T. B. Reynolds, “Transjugular intrahepatic portosystemic shunt: a successful treatment for hepatopulmonary syndrome,” American Journal of Gastroenterology, vol. 93, no. 3, pp. 455–458, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Martínez-Pallí, B. B. Drake, J.-C. García-Pagán et al., “Effect of transjugular intrahepatic portosystemic shunt on pulmonary gas exchange in patients with portal hypertension and hepatopulmonary syndrome,” World Journal of Gastroenterology, vol. 11, no. 43, pp. 6858–6862, 2005. View at Google Scholar
  71. A. J. Portal, M. J. McPhail, M. Bruce et al., “Neutrophil gelatinase—associated lipocalin predicts acute kidney injury in patients undergoing liver transplantation,” Liver Transplantation, vol. 16, no. 11, pp. 1257–1266, 2010. View at Google Scholar
  72. M. Martnllah, M. Guevara, A. Torre et al., “Prognostic importance of the cause of renal failure in patients with cirrhosis,” Gastroenterology, vol. 140, no. 2, pp. 488–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. C. Londoño, M. Guevara, A. Rimola et al., “Hyponatremia impairs early posttransplantation outcome in patients with cirrhosis undergoing liver transplantation,” Gastroenterology, vol. 130, no. 4, pp. 1135–1143, 2006. View at Google Scholar
  74. A. Cárdenas and P. Ginès, “Acute-on-chronic liver failure: the kidneys,” Current Opinion in Critical Care, vol. 17, no. 2, pp. 184–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Arroyo, P. Ginès, A. L. Gerbes et al., “Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis,” Hepatology, vol. 23, no. 1, pp. 164–176, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. D. R. Burton and A. R. Bruce, “Diagnosis and treatment of hepatorenal syndrome,” 2011, Uptodate, 188.81.225.135-A43DB9F193-6.14-177829762. View at Google Scholar
  77. A. Pluta, K. Gutkowski, and M. Hartleb, “Coagulopathy in liver diseases,” Advances in Medical Sciences, vol. 55, no. 1, pp. 16–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. L. S. Neeral, G. N. Patrick, and H. C. Stephen, “Coagulation abnormalities in patients with liver disease,” 2011, Uptodate. View at Google Scholar
  79. C. C. Jenq, M. H. Tsai, Y. C. Tian et al., “Serum sodium predicts prognosis in critically ill cirrhotic patients,” Journal of Clinical Gastroenterology, vol. 44, no. 3, pp. 220–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. P. Liu, L. L. Gluud, B. Als-Nielsen, and C. Gluud, “Artificial and bioartificial support systems for liver failure,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003628, 2004. View at Google Scholar · View at Scopus
  81. W. Laleman, A. Wilmer, P. Evenepoel et al., “Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure,” Critical Care, vol. 10, no. 4, Article ID R108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Donati, F. Piscaglia, L. Colì et al., “Acute systemic, splanchnic and renal haemodynamic changes induced by molecular adsorbent recirculating system (MARS) treatment in patients with end-stage cirrhosis,” Alimentary Pharmacology & Therapeutics, vol. 26, no. 5, pp. 717–726, 2007. View at Google Scholar
  83. T. Dethloff, F. Tofteng, H. J. Frederiksen, M. Hojskov, B. A. Hansen, and F. S. Larsen, “Effect of Prometheus liver assist system on systemic hemodynamics in patients with cirrhosis: a randomized controlled trial study,” World Journal of Gastroenterology, vol. 14, no. 13, pp. 2065–2071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Novelli, M. C. Annesini, and V. Morabito, “Cytokine level modifications: molecular adsorbent recirculating system versus standard medical therapy,” Transplantation Proceedings, vol. 41, no. 4, pp. 1243–1248, 2009. View at Google Scholar
  85. T. I. Hassanein, F. Tofteng, R. S. Brown Jr et al., “Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis,” Hepatology, vol. 46, no. 6, pp. 1853–1862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. A. M. Koivusalo, T. Teikari, K. Höckerstedt, and H. Isoniemi, “Albumin dialysis has a favorable effect on amino acid profile in hepatic encephalopathy,” Metabolic Brain Disease, vol. 23, no. 4, pp. 387–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Kuo, C. Changchien, C. Yang, I. Sheen, and Y. Liaw, “Bacteriemia in patients with cirrhosis of the liver,” Liver, vol. 11, no. 6, pp. 334–339, 1991. View at Google Scholar
  88. A. M. Thulstrup, H. Sfrensen, H. Schfnheyder, J. Moller, and U. Tage-Jansen, “Population-based study of the risk and short-term prognosis for bacteriemia in patients with liver cirrhosis,” Clinical Infectious Diseases, vol. 31, no. 6, pp. 1357–1361, 2000. View at Publisher · View at Google Scholar
  89. V. Arvaniti, G. D'Amico, G. Fede et al., “Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis,” Gastroenterology, vol. 139, no. 4, pp. 1246–e5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Tandon and G. Garcia-Tsao, “Bacterial infections, sepsis, and multiorgan failure in cirrhosis,” Seminars in Liver Disease, vol. 28, no. 1, pp. 26–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. D. H. Johnson and B. A. Cunha, “Infections in cirrhosis,” Infectious Disease Clinics of North America, vol. 15, no. 2, pp. 363–371, 2001. View at Google Scholar · View at Scopus
  92. H. W. Zimmermann, S. Seidler, N. Gassler et al., “Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis,” PLoS ONE, vol. 6, no. 6, Article ID e21381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. N. C. Chavez-Tapia, K. Soares-Weiser, M. Brezis, and L. Leibovici, “Antibiotics for spontaneous bacterial peritonitis in cirrhotic patients,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD002232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. M. G. Foreman, D. M. Mannino, and M. Moss, “Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey,” Chest, vol. 124, no. 3, pp. 1016–1020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. T. TenHoor, D. M. Mannino, and M. Moss, “Risk factors for ARDS in the United States: analysis of the 1993 national mortality followback study,” Chest, vol. 119, no. 4, pp. 1179–1184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Viasus, C. Garcia-Vidal, J. Castellote et al., “Community-acquired pneumonia in patients with liver cirrhosis: clinical features, outcomes, and usefulness of severity scores,” Medicine, vol. 90, no. 2, pp. 110–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. B. I. Kim, H. J. Kim, J. H. Park et al., “Increased intestinal permeability as a predictor of bacterial infections in patients with decompensated liver cirrhosis and hemorrhage,” Journal of Gastroenterology and Hepatology, vol. 26, no. 3, pp. 550–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. C. I. Kang, J. H. Song, D. R. Chung et al., “Liver cirrhosis as a risk factor for mortality in a national cohort of patients with bacteremia,” Journal of Infection, vol. 63, no. 5, pp. 336–343, 2011. View at Google Scholar
  99. B. Filloux, C. Chagneau-Derrode, S. Ragot et al., “Short-term and long-term vital outcomes of cirrhotic patients admitted to an intensive care unit,” European Journal of Gastroenterology & Hepatology, vol. 22, no. 12, pp. 1474–1480, 2010. View at Google Scholar
  100. E. Levesque, E. Hoti, D. Azoulay et al., “Prospective evaluation of the prognostic scores for cirrhotic patients admitted to an intensive care unit,” Journal of Hepatology, vol. 56, no. 1, pp. 95–102, 2012. View at Google Scholar
  101. P. Feltracco, M. Brezzi, S. Barbieri et al., “Intensive care unit admission of decompensated cirrhotic patients: prognostic scoring systems,” Transplantation Proceedings, vol. 43, no. 4, pp. 1079–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. J. L. Vincent, A. Rhodes, A. Perel et al., “Clinical review: update on hemodynamic monitoring—a consensus of 16,” Critical Care, vol. 15, no. 4, p. 229, 2011. View at Google Scholar