Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2012, Article ID 720950, 7 pages
http://dx.doi.org/10.1155/2012/720950
Research Article

Mechanical Ventilation and the Titer of Antibodies as Risk Factors for the Development of Transfusion-Related Lung Injury

1Department of Intensive Care Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
2Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
3Department of Anesthesiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
4Department of Pathology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
5Bioceros B.V., 3584 CM Utrecht, The Netherlands
6Departments of Respiratory Medicine and Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands

Received 13 February 2012; Accepted 5 April 2012

Academic Editor: Mark T. Keegan

Copyright © 2012 A. P. J. Vlaar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kleinman, “A perspective on transfusion-related acute lung injury two years after the Canadian Consensus Conference,” Transfusion, vol. 46, no. 9, pp. 1465–1468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. P. Vlaar, M. J. Schultz, and N. P. Juffermans, “Transfusion-related acute lung injury: a change of perspective,” Netherlands Journal of Medicine, vol. 67, no. 10, pp. 320–326, 2009. View at Google Scholar · View at Scopus
  3. L. M. Williamson, S. Lowe, E. M. Love et al., “Serious hazards of transfusion (SHOT) initiative: analysis of the first two annual reports,” British Medical Journal, vol. 318, no. 7201, pp. 16–19, 1999. View at Google Scholar · View at Scopus
  4. C. C. Silliman, “The two-event model of transfusion-related acute lung injury,” Critical Care Medicine, vol. 34, no. 5, pp. S124–S131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Kopko, C. S. Marshall, M. R. MacKenzie, P. V. Holland, and M. A. Popovsky, “Transfusion-related acute lung injury: report of a clinical look-back investigation,” Journal of the American Medical Association, vol. 287, no. 15, pp. 1968–1971, 2002. View at Google Scholar · View at Scopus
  6. A. L. Nicolle, C. E. Chapmant, V. Carter, and J. P. Wallis, “Transfusion-related acute lung injury caused by two donors with anti-human leucocyte antigen class II antibodies: a look-back investigation,” Transfusion Medicine, vol. 14, no. 3, pp. 225–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Toy, K. M. Hollis-Perry, J. Jun, and M. Nakagawa, “Recipients of blood from a donor with multiple HLA antibodies: a lookback study of transfusion-related acute lung injury,” Transfusion, vol. 44, no. 12, pp. 1683–1688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Bux and U. J. H. Sachs, “The pathogenesis of transfusion-related acute lung injury (TRALI),” British Journal of Haematology, vol. 136, no. 6, pp. 788–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Gajic, R. Rana, J. L. Winters et al., “Transfusion-related acute lung injury in the critically Ill: prospective nested case-control study,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 9, pp. 886–891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Rana, E. R. Fernández-Pérez, S. A. Khan et al., “Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study,” Transfusion, vol. 46, no. 9, pp. 1478–1483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. J. Vlaar, J. M. Binnekade, D. Prins et al., “Risk factors and outcome of transfusion-related acute lung injury in the critically ill: a nested case-control study,” Critical Care Medicine, vol. 38, no. 3, pp. 771–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. P. J. Vlaar, J. J. Hofstra, R. M. Determann et al., “The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study,” Blood, vol. 117, no. 16, pp. 4218–4225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Looney, J. X. Nguyen, Y. Hu, J. A. Van Ziffle, C. A. Lowell, and M. A. Matthay, “Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury,” Journal of Clinical Investigation, vol. 119, no. 11, pp. 3450–3461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. P. J. Vlaar, E. K. Wolthuis, J. J. Hofstra et al., “Mechanical ventilation aggravates transfusion-related acute lung injury induced by MHC-I class antibodies,” Intensive Care Medicine, vol. 36, no. 5, pp. 879–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Silliman, L. K. Boshkov, Z. Mehdizadehkashi et al., “Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors,” Blood, vol. 101, no. 2, pp. 454–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. E. Marik and H. L. Corwin, “Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature,” Critical Care Medicine, vol. 36, no. 9, pp. 2667–2674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Looney, X. Su, J. A. Van Ziffle, C. A. Lowell, and M. A. Matthay, “Neutrophils and their Fcγ receptors are essential in a mouse model of transfusion-related acute lung injury,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1615–1623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. K. Wolthuis, A. P. Vlaar, G. Choi, J. J. Roelofs, N. P. Juffermans, and M. J. Schultz, “Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice.,” Critical Care, vol. 13, no. 1, p. R1, 2009. View at Google Scholar · View at Scopus
  19. J. A. Belperio, M. P. Keane, M. D. Burdick et al., “Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury,” Journal of Clinical Investigation, vol. 110, no. 11, pp. 1703–1716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. E. K. Wolthuis, A. P. J. Vlaar, G. Choi et al., “Recombinant human soluble tumor necrosis factor-alpha receptor fusion protein partly attenuates ventilator-induced lung injury,” Shock, vol. 31, no. 3, pp. 262–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Popovsky and S. B. Moore, “Diagnostic and pathogenetic considerations in transfusion-related acute lung injury,” Transfusion, vol. 25, no. 6, pp. 573–577, 1985. View at Google Scholar · View at Scopus
  22. M. R. Kelher, T. Masuno, E. E. Moore et al., “Plasma from stored packed red blood cells and MHC class I antibodies causes acute lung injury in a 2-event in vivo rat model,” Blood, vol. 113, no. 9, pp. 2079–2087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Silliman, N. F. Voelkel, J. D. Allard et al., “Plasma and lipids from stored packed red blood cells cause acute lung injury in an animal model,” Journal of Clinical Investigation, vol. 101, pp. 1458–1467, 1998. View at Google Scholar
  24. C. C. Silliman, A. J. Bjornsen, T. H. Wyman et al., “Plasma and lipids from stored platelets cause acute lung injury in an animal model,” Transfusion, vol. 43, no. 5, pp. 633–640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. P. J. Vlaar, J. J. Hofstra, M. Levi et al., “Supernatant of aged erythrocytes causes lung inflammation and coagulopathy in a two-hit in vivo syngeneic transfusion model,” Anesthesiology, vol. 113, no. 1, pp. 92–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. P. J. Vlaar, J. J. Hofstra, W. Kulik et al., “Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model,” Blood, vol. 116, no. 8, pp. 1360–1368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Gajic, R. Rana, J. L. Mendez et al., “Acute lung injury after blood transfusion in mechanically ventilated patients,” Transfusion, vol. 44, no. 10, pp. 1468–1474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Lionetti, F. A. Recchia, and V. M. Ranieri, “Overview of ventilator-induced lung injury mechanisms,” Current Opinion in Critical Care, vol. 11, no. 1, pp. 82–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. E. J. Gosselin, K. Wardwell, W. F. C. Rigby, and P. M. Guyre, “Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-γ, and IL-3,” Journal of Immunology, vol. 151, no. 3, pp. 1482–1490, 1993. View at Google Scholar · View at Scopus
  30. W. Reinisch, C. Lichtenberger, G. Steger et al., “Donor dependent, interferon-γ induced HLA-DR expression on human neutrophils in vivo,” Clinical and Experimental Immunology, vol. 133, no. 3, pp. 476–484, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Toy, O. Gajic, P. Bacchetti et al., “Transfusion-related acute lung injury: incidence and risk factors,” Blood, vol. 119, no. 7, pp. 1757–1767, 2012. View at Publisher · View at Google Scholar
  32. N. Win, C. E. Chapman, K. M. Bowles et al., “How much residual plasma may cause TRALI?” Transfusion Medicine, vol. 18, no. 5, pp. 276–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. “Shot annual report,” 2005, http://www.shotuk.org/.
  34. A. P. J. Vlaar, J. M. Binnekade, M. J. Schultz, N. P. Juffermans, and M. M. W. Koopman, “Preventing TRALI: ladies first, what follows?” Critical Care Medicine, vol. 36, no. 12, pp. 3283–3284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. E. Wright, C. P. Snowden, S. C. Athey et al., “Acute lung injury after ruptured abdominal aortic aneurysm repair: the effect of excluding donations from females from the production of fresh frozen plasma,” Critical Care Medicine, vol. 36, no. 6, pp. 1796–1802, 2008. View at Publisher · View at Google Scholar · View at Scopus