Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2013, Article ID 583598, 7 pages
http://dx.doi.org/10.1155/2013/583598
Research Article

Central Venous-to-Arterial Gap Is a Useful Parameter in Monitoring Hypovolemia-Caused Altered Oxygen Balance: Animal Study

1Department of Anaesthesiology and Intensive Therapy, University of Szeged, Semmelweis Utca 6., Szeged 6725, Hungary
2Department of Anaesthesiology and Intensive Therapy, MH Honved Hospital, Róbert Károly Körút 44., Budapest 1134, Hungary
3Institute of Surgical Research, University of Szeged, Pécsi Utca 6., Szeged 6720, Hungary

Received 9 February 2013; Revised 10 July 2013; Accepted 19 July 2013

Academic Editor: Samuel A. Tisherman

Copyright © 2013 Szilvia Kocsi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Perner, “Diagnosing hypovolemia in the critically ill,” Critical Care Medicine, vol. 37, no. 9, pp. 2674–2675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Sakr, M. J. Dubois, D. De Backer, J. Creteur, and J. L. Vincent, “Persistent-microcirculatory alterations are associated with organ failure and death in patients with septic shock,” Critical Care Medicine, vol. 32, no. 9, pp. 1825–1831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Sakr, J.-L. Vincent, K. Reinhart et al., “High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury,” Chest, vol. 128, no. 5, pp. 3098–3108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Giraud, N. Siegenthaler, A. Gayet-Ageron, C. Combescure, J.-A. Romand, and K. Bendjelid, “ScvO2 as a marker to define fluid responsiveness,” Journal of Trauma, vol. 70, no. 4, pp. 802–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Krantz, J. Warberg, and N. H. Secher, “Venous oxygen saturation during normovolaemic haemodilution in the pig,” Acta Anaesthesiologica Scandinavica, vol. 49, no. 8, pp. 1149–1156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Collaborative Study Group on Perioperative ScvO2 Monitoring, “Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients,” Critical Care, vol. 10, no. 6, 2006. View at Google Scholar
  8. F. Vallée, B. Vallet, O. Mathe et al., “Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?” Intensive Care Medicine, vol. 34, no. 12, pp. 2218–2225, 2008. View at Google Scholar · View at Scopus
  9. E. Futier, E. Robin, M. Jabaudon et al., “Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery,” Critical Care, vol. 14, no. 5, article R193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Vallet and G. Lebuffe, “How to titrate vasopressors against fluid loading in septic shock,” Advances in Sepsis, vol. 6, no. 2, pp. 34–40, 2007. View at Google Scholar
  11. W. Groner, J. W. Winkelman, A. G. Harris et al., “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nature Medicine, vol. 5, no. 10, pp. 1209–1213, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Boda, J. Kaszaki, and G. Tálosi, “A new simple tool for tonometric determination of the PCO2 in the gastrointestinal tract: in vitro and in vivo validation studies,” European Journal of Anaesthesiology, vol. 23, no. 8, pp. 680–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kourembanas, P. A. Marsden, L. P. McQuillan, and D. V. Faller, “Hypoxia induces endothelin gene expression and secretion in cultured human endothelium,” Journal of Clinical Investigation, vol. 88, no. 3, pp. 1054–1057, 1991. View at Google Scholar · View at Scopus
  14. C. R. Phillips, K. Vinecore, D. S. Hagg et al., “Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer's: effects on oxygenation, extravascular lung water and haemodynamics,” Critical Care, vol. 13, no. 2, article R30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Saugel, A. Umgelter, T. Schuster, V. Phillip, R. M. Schmid, and W. Huber, “Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter,” Critical Care, vol. 14, no. 3, article R95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. P. Barros, P. Do Nascimento Jr., J. L. P. Marinello et al., “The effects of 6% hydroxyethyl starch-hypertonic saline in resuscitation of dogs with hemorrhagic shock,” Anesthesia and Analgesia, vol. 112, no. 2, pp. 395–404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Vallet, “Intravascular volume expansion: which surrogate markers could help the clinician to assess improved tissue perfusion?” Anesthesia and Analgesia, vol. 112, no. 2, pp. 258–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Michard and J.-L. Teboul, “Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence,” Chest, vol. 121, no. 6, pp. 2000–2008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Monnet, D. Osman, C. Ridel, B. Lamia, C. Richard, and J.-L. Teboul, “Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients,” Critical Care Medicine, vol. 37, no. 3, pp. 951–956, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Pearse, D. Dawson, J. Fawcett, A. Rhodes, R. M. Grounds, and E. D. Bennett, “Changes in central venous saturation after major surgery, and association with outcome,” Critical Care, vol. 9, no. 6, pp. R694–R699, 2005. View at Google Scholar · View at Scopus
  21. C. Teixeira, N. B. Da Silva, A. Savi et al., “Central venous saturation is a predictor of reintubation in difficult-to-wean patients,” Critical Care Medicine, vol. 38, no. 2, pp. 491–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. O. J. Liakopoulos, J. K. Ho, A. Yezbick et al., “An experimental and clinical evaluation of a novel central venous catheter with integrated oximetry for pediatric patients undergoing cardiac surgery,” Anesthesia and Analgesia, vol. 105, no. 6, pp. 1598–1604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Vallet, J.-L. Teboul, S. Cain, and S. Curtis, “Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia,” Journal of Applied Physiology, vol. 89, no. 4, pp. 1317–1321, 2000. View at Google Scholar · View at Scopus
  24. T. C. Jansen, J. Van Bommel, and J. Bakker, “Blood lactate monitoring in critically ill patients: a systematic health technology assessment,” Critical Care Medicine, vol. 37, no. 10, pp. 2827–2839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. R. Ward, M. H. Tiba, K. L. Ryan et al., “Oxygen transport characterization of a human model of progressive hemorrhage,” Resuscitation, vol. 81, no. 8, pp. 987–993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Bartels, R. Bezemer, D. M. J. Milstein et al., “The microcirculatory response to compensated hypovolemia in a lower body negative pressure model,” Microvascular Research, vol. 82, no. 3, pp. 374–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Walley, B. P. Friesen, M. F. Humer, and P. T. Phang, “Small bowel tonometry is more accurate than gastric tonometry in detecting gut ischemia,” Journal of Applied Physiology, vol. 85, no. 5, pp. 1770–1777, 1998. View at Google Scholar · View at Scopus
  28. J. Creteur, D. De Backer, and J.-L. Vincent, “Does gastric tonometry monitor splanchnic perfusion?” Critical Care Medicine, vol. 27, no. 11, pp. 2480–2484, 1999. View at Google Scholar · View at Scopus
  29. F. Palizas, A. Dubin, T. Regueira et al., “Gastric tonometry versus cardiac index as resuscitation goals in septic shock: a multicenter, randomized, controlled trial,” Critical Care, vol. 13, no. 2, article R44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. A. Steiner, S. Staender, C. C. Sieber, and K. Skarvan, “Effects of simulated hypovolaemia on haemodynamics, left ventricular function, mesenteric blood flow and gastric PCO2,” Acta Anaesthesiologica Scandinavica, vol. 51, no. 2, pp. 143–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Otte, A. B. Huisman, R. H. Geelkerken, and J. J. Kolkman, “Jejunal tonometry for the diagnosis of gastrointestinal ischemia. Feasibility, normal values and comparison of jejunal with gastric tonometry exercise testing,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 1, pp. 62–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Thorén, S. M. Jakob, R. Pradl, M. Elam, S.-E. Ricksten, and J. Takala, “Jejunal and gastric mucosal perfusion versus splanchnic blood flow and metabolism: an observational study on postcardiac surgical patients,” Critical Care Medicine, vol. 28, no. 11, pp. 3649–3654, 2000. View at Google Scholar · View at Scopus
  33. H. Lal, Q. Yu, K. Ivor Williams, and B. Woodward, “Hypoxia augments conversion of big-endothelin-1 and endothelin ETB receptor-mediated actions in rat lungs,” European Journal of Pharmacology, vol. 402, no. 1-2, pp. 101–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Lenz, M. Nadansky, J. Gossmann, G. Oremek, and H. Geiger, “Exhaustive exercise-induced tissue hypoxia does not change endothelin and big endothelin plasma levels in normal volunteers,” American Journal of Hypertension, vol. 11, no. 8 I, pp. 1028–1031, 1998. View at Publisher · View at Google Scholar · View at Scopus