Table of Contents Author Guidelines Submit a Manuscript
Current Gerontology and Geriatrics Research
Volume 2010, Article ID 380460, 10 pages
http://dx.doi.org/10.1155/2010/380460
Research Article

Oxidative Stress and Longevity in Okinawa: An Investigation of Blood Lipid Peroxidation and Tocopherol in Okinawan Centenarians

1Okinawa Research Center for Longevity Science, Okinawa 901-2114, Japan
2Department of Human Welfare, Okinawa International University, Okinawa 901-2701, Japan
3Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
4Pacific Health Research and Education Institute, Honolulu, HI 96813, USA
5Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
6Department of Research, Planning and Development, The Queen’s Medical Center, Honolulu, HI 96813, USA
7Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, HI 96817, USA

Received 16 August 2010; Accepted 30 November 2010

Academic Editor: Leonard W. Poon

Copyright © 2010 Makoto Suzuki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Willcox, D. C. Willcox, and L. Ferrucci, “Secrets of healthy aging and longevity from exceptional survivors around the globe: lessons from octogenarians to supercentenarians,” Journals of Gerontology: Series A Biological Sciences and Medical Sciences, vol. 63, no. 11, pp. 1181–1185, 2008. View at Google Scholar · View at Scopus
  2. K. B. Beckman and B. N. Ames, “The free radical theory of aging matures,” Physiological Reviews, vol. 78, no. 2, pp. 547–581, 1998. View at Google Scholar · View at Scopus
  3. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  4. E. D. Wills, “Mechanisms of lipid peroxide formation in animal tissues,” Biochemical Journal, vol. 99, no. 3, pp. 667–676, 1966. View at Google Scholar · View at Scopus
  5. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  6. D. J. Mustacich, R. S. Bruno, and M. G. Traber, “Vitamin E,” Vitamins and Hormones, vol. 76, pp. 1–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. G. Traber, “Vitamin E regulatory mechanisms,” Annual Review of Nutrition, vol. 27, pp. 347–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. W. A. Behrens and R. Madere, “Alpha- and gamma tocopherol concentrations in human serum,” Journal of the American College of Nutrition, vol. 5, no. 1, pp. 91–96, 1986. View at Google Scholar · View at Scopus
  9. S. Kaiser, P. Di Mascio, M. E. Murphy, and H. Sies, “Physical and chemical scavenging of singlet molecular oxygen by tocopherols,” Archives of Biochemistry and Biophysics, vol. 277, no. 1, pp. 101–108, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Galli and A. Azzi, “Present trends in vitamin E research,” BioFactors, vol. 36, no. 1, pp. 33–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. G. Rumley, M. Woodward, A. Rumley, J. Rumley, and G. D. O. Lowe, “Plasma lipid peroxides: relationships to cardiovascular risk factors and prevalent cardiovascular disease,” QJM, vol. 97, no. 12, pp. 809–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Mezzetti, G. Zuliani, F. Romano et al., “Vitamin E and lipid peroxide plasma levels predict the risk of cardiovascular events in a group of healthy very old people,” Journal of the American Geriatrics Society, vol. 49, no. 5, pp. 533–537, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M Suzuki, M Adachi, and M. Akisaka, “Plasma lipid peroxide: decreasing effects after tocopherol administration,” in Proceedings of the International Symposium on Vitamin E, p. 141, 1991.
  14. M. Suzuki, B. J. Willcox, and D. C. Willcox, “Implications from and for food cultures for cardiovascular disease: longevity,” Asia Pacific Journal of Clinical Nutrition, vol. 10, no. 2, pp. 165–171, 2001. View at Google Scholar · View at Scopus
  15. B. J. Willcox, D. C. Willcox, H. Todoriki et al., “Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span,” Annals of the New York Academy of Sciences, vol. 1114, pp. 434–455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. H. Dodge, Y. Katsumata, H. Todoriki et al., “Comparisons of plasma/serum micronutrients between Okinawan and Oregonian elders: a pilot study,” Journals of Gerontology: Series A Biological Sciences and Medical Sciences, vol. 65A, no. 10, pp. 1060–1067, 2010. View at Publisher · View at Google Scholar
  17. K. Warner and T. L. Mounts, “Analysis of tocopherols and phytosterols in vegetable oils by HPLC with evaporative light-scattering detection,” Journal of the American Oil Chemists' Society, vol. 67, no. 11, pp. 827–831, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. USDA National Nutrient Database for Standard Reference, Release 23, “Composition of Foods Raw, Processed, Prepared,” U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory. 2010.
  19. D. C. Willcox, B. J. Willcox, H. Todoriki, and M. Suzuki, “The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load,” Journal of the American College of Nutrition, vol. 28, no. 4, pp. 500S–516S, 2009. View at Google Scholar · View at Scopus
  20. M. Suzuki, T. Akamatsu, Y. Hata, S. Ishi, and S. Inayama, “Medical and physiological analysis of centenarians—level of serum lipid peroxide, plasma amino acids, vitamin E,” Journal of the Japanese Society of Internal Medicine, vol. 72, p. 224, 1983 (Japanese). View at Google Scholar
  21. T. Ono and K. Eto, “Clinical application of lipid peroxide measurement—thiobarbituric acid (TBA) values of the blood and other body fluids,” Rinsho Byori, vol. 15, no. 9, pp. 601–603, 1967. View at Google Scholar · View at Scopus
  22. T. Hendriks and R. F. T. A. Assman, “On the fluorometric assay of circulating lipoperoxides,” Clinica Chimica Acta, vol. 174, no. 3, pp. 263–270, 1988. View at Google Scholar · View at Scopus
  23. G. T. Vatassery, A. M. Krezowski, and J. H. Eckfeldt, “Vitamin E concentrations in human blood plasma and platelets,” American Journal of Clinical Nutrition, vol. 37, no. 6, pp. 1020–1024, 1983. View at Google Scholar · View at Scopus
  24. I. J. Schatz, K. Masaki, K. Yano, R. Chen, B. L. Rodriguez, and J. D. Curb, “Cholesterol and all-cause mortality in elderly people from the Honolulu Heart Program: a cohort study,” Lancet, vol. 358, no. 9279, pp. 351–355, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. B. F. Oliveira, J. A. Nogueira-Machado, and M. M. Chaves, “The role of oxidative stress in the aging process,” The Scientific World Journal, vol. 10, pp. 1121–1128, 2010. View at Publisher · View at Google Scholar
  26. D. Pratico, “Lipid peroxidation and the aging process,” Science of Aging Knowledge Environment, no. 50, p. re5, 2002. View at Google Scholar
  27. T. Perls and D. Terry, “Genetics of exceptional longevity,” Experimental Gerontology, vol. 38, no. 7, pp. 725–730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Nayeem, M. Nagamani, K. E. Anderson, Y. Huang, J. J. Grady, and L. J. W. Lu, “Dietary β-tocopherol and linoleic acid, serum insulin, and waist circumference predict circulating sex hormone-binding globulin in premenopausal women,” Journal of Nutrition, vol. 139, no. 6, pp. 1135–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Sirikhachornkit, J. W. Shin, I. Baroli, and K. K. Niyogi, “Replacement of α-tocopherol by β-tocopherol enhances resistance to photooxidative stress in a xanthophyll-deficient strain of chlamydomonas reinhardtii,” Eukaryotic Cell, vol. 8, no. 11, pp. 1648–1657, 2009. View at Publisher · View at Google Scholar
  30. M. Suzuki, H. Sakugawa, K. Furumi, T. Akamatsu, and K. Suzuki, “The medical and sociological survey of centenarians in Okinawa,” Japanese Journal of Geriatrics, vol. 15, p. 31, 1978 (Japanese). View at Google Scholar
  31. R. A. Rabini, A. Vignini, D. Martarelli et al., “Evidence for reduction of pro-atherosclerotic properties in platelets from healthy centenarians,” Experimental Gerontology, vol. 38, no. 4, pp. 367–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Rabini, N. Moretti, R. Staffolani et al., “Reduced susceptibility to peroxidation of erythrocyte plasma membranes from centenarians,” Experimental Gerontology, vol. 37, no. 5, pp. 657–663, 2002. View at Publisher · View at Google Scholar
  33. P. C. Calder, “n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases,” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1505S–1519S, 2006. View at Google Scholar · View at Scopus
  34. I. Elmadfa, N. Both-Bedenbender, B. Sierakowski, and E. Steinhagen-Thiessen, “Significance of vitamin E in aging,” Zeitschrift fur Gerontologie, vol. 19, no. 3, pp. 206–214, 1986. View at Google Scholar · View at Scopus
  35. J. Hallfrisch, D. C. Muller, and V. N. Singh, “Vitamin A and E intakes and plasma concentrations of retinol, β- carotene, and α-tocopherol in men and women of the Baltimore longitudinal study of aging,” American Journal of Clinical Nutrition, vol. 60, no. 2, pp. 176–182, 1994. View at Google Scholar · View at Scopus
  36. E. S. Ford and A. Sowell, “Serum α-tocopherol status in the United States population: findings from the Third National Health and Nutrition Examination Survey,” American Journal of Epidemiology, vol. 150, no. 3, pp. 290–300, 1999. View at Google Scholar · View at Scopus
  37. E. S. Ford, R. L. Schleicher, A. H. Mokdad, U. A. Ajani, and S. Liu, “Distribution of serum concentrations of α-tocopherol and γ-tocopherol in the US population,” American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 375–383, 2006. View at Google Scholar · View at Scopus
  38. S. Vogel, J. H. Contois, K. L. Tucker, P. W. F. Wilson, E. J. Schaefer, and C. J. Lammi-Keefe, “Plasma retinol and plasma and lipoprotein tocopherol and carotenoid concentrations in healthy elderly participants of the Framingham Heart Study,” American Journal of Clinical Nutrition, vol. 66, no. 4, pp. 950–958, 1997. View at Google Scholar · View at Scopus
  39. E. A. Meagher, O. P. Barry, J. A. Lawson, J. Rokach, and G. A. FitzGerald, “Effects of vitamin E on lipid peroxidation in healthy persons,” Journal of the American Medical Association, vol. 285, no. 9, pp. 1178–1182, 2001. View at Google Scholar · View at Scopus
  40. B. Kłapcińska, J. Derejczyk, K. Wieczorowska-Tobis, A. Sobczak, E. Sadowska-Krepa, and A. Danch, “Antioxidant defense in centenarians (a preliminary study),” Acta Biochimica Polonica, vol. 47, no. 2, pp. 281–292, 2000. View at Google Scholar · View at Scopus
  41. H. R. Andersen, B. Jeune, H. Nybo, J. B. Nielsen, K. Andersen-Ranberg, and P. Grandjean, “Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians,” Age and Ageing, vol. 27, no. 5, pp. 643–648, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Reveillaud, J. Phillips, B. Duyf, A. Hilliker, A. Kongpachith, and J. E. Fleming, “Phenotypic rescue by a bovine transgene in a Cu/Zn superoxide dismutase- null mutant of Drosophila melanogaster,” Molecular and Cellular Biology, vol. 14, no. 2, pp. 1302–1307, 1994. View at Google Scholar · View at Scopus
  43. J. P. Phillips, S. D. Campbell, D. Michaud, M. Charbonneau, and A. J. Hilliker, “Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2761–2765, 1989. View at Google Scholar · View at Scopus
  44. A. B. Salmon, A. Richardson, and V. I. Pérez, “Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?” Free Radical Biology and Medicine, vol. 48, no. 5, pp. 642–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ohashi, M. S. Runge, F. M. Faraci, and D. D. Heistad, “MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2331–2336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Yang, L. J. Roberts, M. J. Shi et al., “Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E,” Circulation Research, vol. 95, no. 11, pp. 1075–1081, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. D. C. Willcox, B. J. Willcox, W. C. Hsueh, and M. Suzuki, “Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study,” Age, vol. 28, no. 4, pp. 313–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. B. J. Willcox, T. A. Donlon, Q. He et al., “FOXO3A genotype is strongly associated with human longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 13987–13992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. W.-H. Chung, R.-L. Dao, L.-K. Chen, and S.-I. Hung, “The role of genetic variants in human longevity,” Ageing Research Reviews, vol. 9, supplement 1, pp. S67–S78, 2010. View at Publisher · View at Google Scholar
  50. L. Jofre-Monseny, A. M. Minihane, and G. Rimbach, “Impact of apoE genotype on oxidative stress, inflammation and disease risk,” Molecular Nutrition and Food Research, vol. 52, no. 1, pp. 131–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. J. P. L. Kops, T. B. Dansen, P. E. Polderman et al., “Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress,” Nature, vol. 419, no. 6904, pp. 316–321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Azzi, R. Gysin, P. Kempná et al., “The role of α-tocopherol in preventing disease: from epidemiology to molecular events,” Molecular Aspects of Medicine, vol. 24, no. 6, pp. 325–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. G. Stephens, A. Parsons, P. M. Schofield et al., “Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS),” Lancet, vol. 347, no. 9004, pp. 781–786, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. M. G. Traber, “Regulation of xenobiotic metabolism, the only signaling function of α-tocopherol?” Molecular Nutrition and Food Research, vol. 54, no. 5, pp. 661–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Mecocci, M. C. Polidori, L. Troiano et al., “Plasma antioxidants and longevity: a study on healthy centenarians,” Free Radical Biology and Medicine, vol. 28, no. 8, pp. 1243–1248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. B. J. Willcox, J. D. Curb, and B. L. Rodriguez, “Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies,” American Journal of Cardiology, vol. 101, no. 10, pp. S75–S86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Takata, T. Ishii, M. Suzuki, S. Sekiguchi, and H. Iri, “Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians,” Lancet, vol. 2, no. 8563, pp. 824–826, 1987. View at Google Scholar · View at Scopus