Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2009, Article ID 537504, 8 pages
http://dx.doi.org/10.1155/2009/537504
Research Article

Dimensionality Reduction and Channel Selection of Motor Imagery Electroencephalographic Data

BCI Lab, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria

Received 27 October 2008; Revised 19 January 2009; Accepted 24 March 2009

Academic Editor: Fabio Babiloni

Copyright © 2009 Muhammad Naeem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. L. Nicolelis, “Actions from thoughts,” Nature, vol. 409, no. 6818, pp. 403–407, 2001. View at Publisher · View at Google Scholar
  2. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. View at Publisher · View at Google Scholar
  3. N. Birbaumer, “Brain-computer-interface research: coming of age,” Clinical Neurophysiology, vol. 117, no. 3, pp. 479–483, 2006. View at Publisher · View at Google Scholar
  4. M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past, present and future,” Trends in Neurosciences, vol. 29, no. 9, pp. 536–546, 2006. View at Publisher · View at Google Scholar
  5. G. Pfurtscheller, G. R. Müller-Putz, A. Schlögl et al., “15 years of BCI research at Graz University of Technology: current projects,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 205–210, 2006. View at Publisher · View at Google Scholar
  6. H. Berger, “Über das Elektrenkephalogramm des Menschen,” Archiv für Psychiatrie und Nervenkrankheiten, vol. 87, no. 1, pp. 527–570, 1929. View at Publisher · View at Google Scholar
  7. H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441–446, 2000. View at Publisher · View at Google Scholar
  8. S. Lemm, B. Blankertz, G. Curio, and K.-R. Müller, “Spatio-spectral filters for improving the classification of single trial EEG,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1541–1548, 2005. View at Publisher · View at Google Scholar
  9. A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159, 1995. View at Publisher · View at Google Scholar
  10. A. Hyvärinen, “A family of fixed-point algorithms for independent component analysis,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), vol. 5, pp. 3917–3920, Munich, Germany, April 1997.
  11. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997. View at Publisher · View at Google Scholar
  12. M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, “Seperability of four-class motor imagery data using independent components analysis,” Journal of Neural Engineering, vol. 3, no. 3, pp. 208–216, 2006. View at Publisher · View at Google Scholar
  13. B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data,” Clinical Neurophysiology, vol. 113, no. 1, pp. 43–47, 2002. View at Publisher · View at Google Scholar
  14. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004. View at Publisher · View at Google Scholar
  15. I. T. Jolliffe, Principal Component Analysis, Springer, New York, NY, USA, 1986.
  16. B. Hjorth, “An on line transformation of EEG scalp potentials into orthogonal source derivations,” Electroencephalography and Clinical Neurophysiology, vol. 39, no. 5, pp. 526–530, 1975. View at Publisher · View at Google Scholar
  17. S. Vaseghi and H. Jetelová, “Principal and independent component analysis in image processing,” in Proceedings of the 14th ACM International Conference on Mobile Computing and Networking (MOBICOM '06), pp. 1–5, San Francisco, Calif, USA, September 2006.
  18. N. Kovacevic and A. R. McIntosh, “Groupwise independent component decomposition of EEG data and partial least square analysis,” NeuroImage, vol. 35, no. 3, pp. 1103–1112, 2007. View at Publisher · View at Google Scholar
  19. G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. Lopes da Silva, “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” NeuroImage, vol. 31, no. 1, pp. 153–159, 2006. View at Publisher · View at Google Scholar
  20. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, New York, NY, USA, 2001.
  21. C. J. James and O. J. Gibson, “Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 1108–1116, 2003. View at Publisher · View at Google Scholar
  22. W. Lu and J. C. Rajapakse, “Approach and applications of constrained ICA,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 203–212, 2005. View at Publisher · View at Google Scholar
  23. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, NY, USA, 2001.
  24. J. Karhunen, P. Pajunen, and E. Oja, “The nonlinear PCA criterion in blind source separation: relations with other approaches,” Neurocomputing, vol. 22, no. 1–3, pp. 5–20, 1998. View at Publisher · View at Google Scholar
  25. B. Lou, B. Hong, X. Gao, and S. Gao, “Bipolar electrode selection for a motor imagery based brain-computer interface,” Journal of Neural Engineering, vol. 5, no. 3, pp. 342–349, 2008. View at Publisher · View at Google Scholar