Computational Intelligence and Neuroscience no longer accepts submissions
Go to Table of Contents
Journal profile
Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.
Editor spotlight
Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.
Special Issues
Latest Articles
More articlesEmploying Atrous Pyramid Convolutional Deep Learning Approach for Detection to Diagnose Breast Cancer Tumors
Breast cancer is among the most common diseases and one of the most common causes of death in the female population worldwide. Early identification of breast cancer improves survival. Therefore, radiologists will be able to make more accurate diagnoses if a computerized system is developed to detect breast cancer. Computer-aided design techniques have the potential to help medical professionals to determine the specific location of breast tumors and better manage this disease more rapidly and accurately. MIAS datasets were used in this study. The aim of this study is to evaluate a noise reduction for mammographic pictures and to identify salt and pepper, Gaussian, and Poisson so that precise mass detection operations can be estimated. As a result, it provides a method for noise reduction known as quantum wavelet transform (QWT) filtering and an image morphology operator for precise mass segmentation in mammographic images by utilizing an Atrous pyramid convolutional neural network as the deep learning model for classification of mammographic images. The hybrid methodology dubbed QWT-APCNN is compared to earlier methods in terms of peak signal-to-noise ratio (PSNR) and mean square error (MSE) in noise reduction and detection accuracy for mass area recognition. Compared to state-of-the-art approaches, the proposed method performed better at noise reduction and segmentation according to different evaluation criteria such as an accuracy rate of 98.57%, 92% sensitivity, 88% specificity, 90% DSS, and ROC and AUC rate of 88.77.
A New ELECTRE Method Based on Left and Right Score for Multicriteria Decision-Making
The procedure for ranking the performance of systems using the method Elimination and Choice Translating Reality (ELECTRE) is one of the most important and practical methods in multicriteria decision-making (MCDM). The classical ELECTRE technique uses the concept of dominance implicitly. In this method, all options are evaluated using a comparison of unexpected rankings, thus eliminating ineffective options. All stages of the electrification technique are based on a coordinated set and an uncoordinated set, which is why it is known as “coordination analysis.” The ELECTRE method has two important weaknesses, first, the use of thresholds, which are used to calculate the coordination and noncoordination matrix, and second, this method does not give us a complete and final ranking and is limited to the top options. In order to reduce these weaknesses in this research, interval fuzzy numbers have been used. In the proposed process, the numbers to the left and right of the intervals are considered, and a better method is presented with fuzzy techniques based on the ELECTRE technique. In the research results, using the examples taken from previous researches, the ability of the proposed method is shown.
Towards a Better Performance in Facial Expression Recognition: A Data-Centric Approach
Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine, healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching for better algorithms to improve recognition. However, progress is insufficient. Despite being the main resource for automatic learning, few works focus on improving the quality of datasets. We propose a novel data-centric method to tackle misclassification, a problem commonly encountered in facial image datasets. The strategy is to progressively refine the dataset by successive training of a CNN model that is fixed. Each training uses the facial images corresponding to the correct predictions of the previous training, allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model performs automatic reclassification of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or augmenting facial images. Experimental results on three representative datasets proved the effectiveness of the proposed method, improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AffectNet, respectively. The recognition rates on the reclassified versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art performance.
ML-DSTnet: A Novel Hybrid Model for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning and Dempster–Shafer Theory
Medical intelligence detection systems have changed with the help of artificial intelligence and have also faced challenges. Breast cancer diagnosis and classification are part of this medical intelligence system. Early detection can lead to an increase in treatment options. On the other hand, uncertainty is a case that has always been with the decision-maker. The system’s parameters cannot be accurately estimated, and the wrong decision is made. To solve this problem, we have proposed a method in this article that reduces the ignorance of the problem with the help of Dempster–Shafer theory so that we can make a better decision. This research on the MIAS dataset, based on image processing machine learning and Dempster–Shafer mathematical theory, tries to improve the diagnosis and classification of benign, malignant masses. We first determine the results of the diagnosis of mass type with MLP by using the texture feature and CNN. We combine the results of the two classifications with Dempster–Shafer theory and improve its accuracy. The obtained results show that the proposed approach has better performance than others based on evaluation criteria such as accuracy of 99.10%, sensitivity of 98.4%, and specificity of 100%.
A Movie Recommender System Based on User Profile and Artificial Bee Colony Optimization
In this study, a new algorithm for recommending movies to viewers has been proposed. To do this, the suggested method employs data mining techniques. The proposed method includes three steps for generating recommendations: “preprocessing of user profile information,” “feature extraction,” and “recommendation.” In the first step of proposed method, the user information will be examined and transformed into a form that can be handled in the next phases. In the second step of the proposed method, user attributes are then extracted as a collection of their individual qualities, as well as the average rating of each user for various genres. The bee colony optimization algorithm is then used to select the optimal features. Finally, in the third step of the proposed method, the ratings of similar users are utilized to offer movies to the target user, and the similarities between various users are determined using the characteristics calculated for them, as well as the Euclidean distance criteria. The proposed method was evaluated using the MovieLens database, and its output was assessed in terms of precision and recall criteria; these results show that the proposed method will increase the precision by an average of 1.39% and the recall by 0.8% compared to the compared algorithms.
Medical Specialty Classification Based on Semiadversarial Data Augmentation
Rapidly increasing adoption of electronic health record (EHR) systems has caused automated medical specialty classification to become an important research field. Medical specialty classification not only improves EHR system retrieval efficiency and helps general practitioners identify urgent patient issues but also is useful in studying the practice and validity of clinical referral patterns. However, currently available medical note data are imbalanced and insufficient. In addition, medical specialty classification is a multicategory problem, and it is not easy to remove sensitive information from numerous medical notes and tag them. To solve those problems, we propose a data augmentation method based on adversarial attacks. The semiadversarial examples generated during the dynamic process of adversarial attacking are added to the training set as augmented examples, which can effectively expand the coverage of the training data on the decision space. Besides, as nouns in medical notes are critical information, we design a classification framework incorporating probabilistic information of nouns, with confidence recalculation after the softmax layer. We validate our proposed method on an 18-class dataset with extremely unbalanced data, and comparison experiments with four benchmarks show that our method improves accuracy and F1 score to the optimal level, by an average of 14.9%.