Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication37 days
CiteScore4.700
Impact Factor2.284

A Comparative Performance Analysis of Computational Intelligence Techniques to Solve the Asymmetric Travelling Salesman Problem

Read the full article

 Journal profile

Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.

 Editor spotlight

Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Deep Learning Prediction Model for Structural Deformation Based on Temporal Convolutional Networks

The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.

Research Article

SGPNet: A Three-Dimensional Multitask Residual Framework for Segmentation and IDH Genotype Prediction of Gliomas

Glioma is the main type of malignant brain tumor in adults, and the status of isocitrate dehydrogenase (IDH) mutation highly affects the diagnosis, treatment, and prognosis of gliomas. Radiographic medical imaging provides a noninvasive platform for sampling both inter and intralesion heterogeneity of gliomas, and previous research has shown that the IDH genotype can be predicted from the fusion of multimodality radiology images. The features of medical images and IDH genotype are vital for medical treatment; however, it still lacks a multitask framework for the segmentation of the lesion areas of gliomas and the prediction of IDH genotype. In this paper, we propose a novel three-dimensional (3D) multitask deep learning model for segmentation and genotype prediction (SGPNet). The residual units are also introduced into the SGPNet that allows the output blocks to extract hierarchical features for different tasks and facilitate the information propagation. Our model reduces 26.6% classification error rates comparing with previous models on the datasets of Multimodal Brain Tumor Segmentation Challenge (BRATS) 2020 and The Cancer Genome Atlas (TCGA) gliomas’ databases. Furthermore, we first practically investigate the influence of lesion areas on the performance of IDH genotype prediction by setting different groups of learning targets. The experimental results indicate that the information of lesion areas is more important for the IDH genotype prediction. Our framework is effective and generalizable, which can serve as a highly automated tool to be applied in clinical decision making.

Research Article

Small Network for Lightweight Task in Computer Vision: A Pruning Method Based on Feature Representation

Many current convolutional neural networks are hard to meet the practical application requirement because of the enormous network parameters. For accelerating the inference speed of networks, more and more attention has been paid to network compression. Network pruning is one of the most efficient and simplest ways to compress and speed up the networks. In this paper, a pruning algorithm for the lightweight task is proposed, and a pruning strategy based on feature representation is investigated. Different from other pruning approaches, the proposed strategy is guided by the practical task and eliminates the irrelevant filters in the network. After pruning, the network is compacted to a smaller size and is easy to recover accuracy with fine-tuning. The performance of the proposed pruning algorithm is validated on the acknowledged image datasets, and the experimental results prove that the proposed algorithm is more suitable to prune the irrelevant filters for the fine-tuning dataset.

Research Article

Weighted-Attribute Triplet Hashing for Large-Scale Similar Judicial Case Matching

Similar judicial case matching aims to enable an accurate selection of a judicial document that is most similar to the target document from multiple candidates. The core of similar judicial case matching is to calculate the similarity between two fact case documents. Owing to similar judicial case matching techniques, legal professionals can promptly find and judge similar cases in a candidate set. These techniques can also benefit the development of judicial systems. However, the document of judicial cases not only is long in length but also has a certain degree of structural complexity. Meanwhile, a variety of judicial cases are also increasing rapidly; thus, it is difficult to find the document most similar to the target document in a large corpus. In this study, we present a novel similar judicial case matching model, which obtains the weight of judicial feature attributes based on hash learning and realizes fast similar matching by using a binary code. The proposed model extracts the judicial feature attributes vector using the bidirectional encoder representations from transformers (BERT) model and subsequently obtains the weighted judicial feature attributes through learning the hash function. We further impose triplet constraints to ensure that the similarity of judicial case data is well preserved when projected into the Hamming space. Comprehensive experimental results on public datasets show that the proposed method is superior in the task of similar judicial case matching and is suitable for large-scale similar judicial case matching.

Research Article

A Feature Fusion Method with Guided Training for Classification Tasks

In this paper, a feature fusion method with guiding training (FGT-Net) is constructed to fuse image data and numerical data for some specific recognition tasks which cannot be classified accurately only according to images. The proposed structure is divided into the shared weight network part, the feature fused layer part, and the classification layer part. First, the guided training method is proposed to optimize the training process, the representative images and training images are input into the shared weight network to learn the ability that extracts the image features better, and then the image features and numerical features are fused together in the feature fused layer to input into the classification layer for the classification task. Experiments are carried out to verify the effectiveness of the proposed model. Loss is calculated by the output of both the shared weight network and classification layer. The results of experiments show that the proposed FGT-Net achieves the accuracy of 87.8%, which is 15% higher than the CNN model of ShuffleNetv2 (which can process image data only) and 9.8% higher than the DNN method (which processes structured data only).

Research Article

High-Resolution Remote Sensing Image Classification with RmRMR-Enhanced Bag of Visual Words

A ReliefF improved mRMR (RmRMR) criterion-based bag of visual words (BoVW) algorithm is proposed to filter the visual words that are generated with high information redundancy for remote sensing image classification. First, the contribution degree of each word to the classification is represented by its weighting parameter, which is assigned using the ReliefF algorithm. Next, the relevance and redundancy of each word are calculated according to the mRMR criterion with the addition of a dictionary balance coefficient. Finally, a novel dictionary discriminant function is established, and the globally discriminative small-scale dictionary subsets are filtered and obtained. Experimental results show that the proposed algorithm effectively reduces the amount of redundant information in the dictionary and better balances the relevance and redundancy of words to improve the feature descriptive power of dictionary subsets and markedly increase the classification precision on a high-resolution remote sensing image.

Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication37 days
CiteScore4.700
Impact Factor2.284
 Submit