Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate27%
Submission to final decision77 days
Acceptance to publication38 days
CiteScore2.270
Impact Factor2.154
 Submit

Multi/Many-Objective Particle Swarm Optimization Algorithm Based on Competition Mechanism

Read the full article

 Journal profile

Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.

 Editor spotlight

Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Effects of Visual Attention on Tactile P300 BCI

Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on a single-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study, our main purpose is to explore and investigate the effects of visual attention on a tactile P300 BCI. Approach. We designed a conventional tactile P300 BCI where vibration stimuli were provided by five stimulators and two of them were fixed on target locations on the participant’s left and right wrists. Two conditions (one condition with visual attention and the other condition without visual attention) were tested by eleven healthy participants. Main Results. Our results showed that, when participants visually attended to the location of target stimulus, significantly higher classification accuracies and information transfer rates were obtained (both for ). Furthermore, participants reported that visually attending to the stimulus made it easier to identify the target stimulus in random sequences of vibration stimuli. Significance. These findings suggest that visual attention has positive effects on both tactile P300 BCI performance and user-evaluation.

Research Article

A Novel Low-Bit Quantization Strategy for Compressing Deep Neural Networks

The increase in sophistication of neural network models in recent years has exponentially expanded memory consumption and computational cost, thereby hindering their applications on ASIC, FPGA, and other mobile devices. Therefore, compressing and accelerating the neural networks are necessary. In this study, we introduce a novel strategy to train low-bit networks with weights and activations quantized by several bits and address two corresponding fundamental issues. One is to approximate activations through low-bit discretization for decreasing network computational cost and dot-product memory. The other is to specify weight quantization and update mechanism for discrete weights to avoid gradient mismatch. With quantized low-bit weights and activations, the costly full-precision operation will be replaced by shift operation. We evaluate the proposed method on common datasets, and results show that this method can dramatically compress the neural network with slight accuracy loss.

Research Article

An Improved Deep Residual Network-Based Semantic Simultaneous Localization and Mapping Method for Monocular Vision Robot

The robot simultaneous localization and mapping (SLAM) is a very important and useful technology in the robotic field. However, the environmental map constructed by the traditional visual SLAM method contains little semantic information, which cannot satisfy the needs of complex applications. The semantic map can deal with this problem efficiently, which has become a research hot spot. This paper proposed an improved deep residual network- (ResNet-) based semantic SLAM method for monocular vision robots. In the proposed approach, an improved image matching algorithm based on feature points is presented, to enhance the anti-interference ability of the algorithm. Then, the robust feature point extraction method is adopted in the front-end module of the SLAM system, which can effectively reduce the probability of camera tracking loss. In addition, the improved key frame insertion method is introduced in the visual SLAM system to enhance the stability of the system during the turning and moving of the robot. Furthermore, an improved ResNet model is proposed to extract the semantic information of the environment to complete the construction of the semantic map of the environment. Finally, various experiments are conducted and the results show that the proposed method is effective.

Research Article

Using Harmony Search Algorithm in Neural Networks to Improve Fraud Detection in Banking System

Financial fraud is among the main problems undermining the confidence of customers in addition to incurring economic losses to banks and financial institutions. In recent years, along with the proliferation of fraud, financial institutions began looking for ways to find a suitable solution in the fight against fraud. Given the advanced and varied changes in methods of fraud, extensive research has been conducted to detect fraud. In this paper, the Artificial Neural Network technique and Harmony Search Algorithm are used to detect fraud. In the proposed method, hidden patterns between normal and fraudulent customers’ information are searched. Given that fraudulent behavior could be detected and stopped before they take place, the results of the proposed system show that it has an acceptable capability in fraud detection.

Research Article

Multiperspective Light Field Reconstruction Method via Transfer Reinforcement Learning

Compared with traditional imaging, the light field contains more comprehensive image information and higher image quality. However, the available data for light field reconstruction are limited, and the repeated calculation of data seriously affects the accuracy and the real-time performance of multiperspective light field reconstruction. To solve the problems, this paper proposes a multiperspective light field reconstruction method based on transfer reinforcement learning. Firstly, the similarity measurement model is established. According to the similarity threshold of the source domain and the target domain, the reinforcement learning model or the feature transfer learning model is autonomously selected. Secondly, the reinforcement learning model is established. The model uses multiagent (i.e., multiperspective) Q-learning to learn the feature set that is most similar to the target domain and the source domain and feeds it back to the source domain. This model increases the capacity of the source-domain samples and improves the accuracy of light field reconstruction. Finally, the feature transfer learning model is established. The model uses PCA to obtain the maximum embedding space of source-domain and target-domain features and maps similar features to a new space for label data migration. This model solves the problems of multiperspective data redundancy and repeated calculations and improves the real-time performance of maneuvering target recognition. Extensive experiments on PASCAL VOC datasets demonstrate the effectiveness of the proposed algorithm against the existing algorithms.

Research Article

Evaluation of Brain Tortuosity Measurement for the Automatic Multimodal Classification of Subjects with Alzheimer’s Disease

The 3D tortuosity determined in several brain areas is proposed as a new morphological biomarker (BM) to be considered in early detection of Alzheimer’s disease (AD). It is measured using the sum of angles method and it has proven to be sensitive to anatomical changes that appear in gray and white matter and temporal and parietal lobes during mild cognitive impairment (MCI). Statistical analysis showed significant differences () between tortuosity indices determined for healthy controls (HC) vs. MCI and HC vs. AD in most of the analyzed structures. Other clinically used BMs have also been incorporated in the analysis: beta-amyloid and tau protein CSF and plasma concentrations, as well as other image-extracted parameters. A classification strategy using random forest (RF) algorithms was implemented to discriminate between three samples of the studied populations, selected from the ADNI database. Classification rates considering only image-extracted parameters show an increase of 9.17%, when tortuosity is incorporated. An enhancement of 1.67% is obtained when BMs measured from several modalities are combined with tortuosity.

Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate27%
Submission to final decision77 days
Acceptance to publication38 days
CiteScore2.270
Impact Factor2.154
 Submit