Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication37 days
CiteScore4.700
Impact Factor2.284
 Submit

Classification of Task-State fMRI Data Based on Circle-EMD and Machine Learning

Read the full article

 Journal profile

Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.

 Editor spotlight

Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Review Article

Generative Adversarial Network Technologies and Applications in Computer Vision

Computer vision is one of the hottest research fields in deep learning. The emergence of generative adversarial networks (GANs) provides a new method and model for computer vision. The idea of GANs using the game training method is superior to traditional machine learning algorithms in terms of feature learning and image generation. GANs are widely used not only in image generation and style transfer but also in the text, voice, video processing, and other fields. However, there are still some problems with GANs, such as model collapse and uncontrollable training. This paper deeply reviews the theoretical basis of GANs and surveys some recently developed GAN models, in comparison with traditional GAN models. The applications of GANs in computer vision include data enhancement, domain transfer, high-quality sample generation, and image restoration. The latest research progress of GANs in artificial intelligence (AI) based security attack and defense is introduced. The future development of GANs in computer vision is also discussed at the end of the paper with possible applications of AI in computer vision.

Research Article

A New Image Classification Approach via Improved MobileNet Models with Local Receptive Field Expansion in Shallow Layers

Because deep neural networks (DNNs) are both memory-intensive and computation-intensive, they are difficult to apply to embedded systems with limited hardware resources. Therefore, DNN models need to be compressed and accelerated. By applying depthwise separable convolutions, MobileNet can decrease the number of parameters and computational complexity with less loss of classification precision. Based on MobileNet, 3 improved MobileNet models with local receptive field expansion in shallow layers, also called Dilated-MobileNet (Dilated Convolution MobileNet) models, are proposed, in which dilated convolutions are introduced into a specific convolutional layer of the MobileNet model. Without increasing the number of parameters, dilated convolutions are used to increase the receptive field of the convolution filters to obtain better classification accuracy. The experiments were performed on the Caltech-101, Caltech-256, and Tubingen animals with attribute datasets, respectively. The results show that Dilated-MobileNets can obtain up to 2% higher classification accuracy than MobileNet.

Research Article

A Species Conservation-Based Particle Swarm Optimization with Local Search for Dynamic Optimization Problems

In the optimization of problems in dynamic environments, algorithms need to not only find the global optimal solutions in a specific environment but also to continuously track the moving optimal solutions over dynamic environments. To address this requirement, a species conservation-based particle swarm optimization (PSO), combined with a spatial neighbourhood best searching technique, is proposed. This algorithm employs a species conservation technique to save the found optima distributed in the search space, and these saved optima either transferred into the new population or replaced by the better individual within a certain distance in the subsequent evolution. The particles in the population are attracted by its history best and the optimal solution nearby based on the Euclidean distance other than the index-based. An experimental study is conducted based on the moving peaks benchmark to verify the performance of the proposed algorithm in comparison with several state-of-the-art algorithms widely used in dynamic optimization problems. The experimental results show the effectiveness and efficiency of the proposed algorithm for tracking the moving optima in dynamic environments.

Research Article

Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization

Brain-computer interface (BCI) is a communication and control system linking the human brain and computers or other electronic devices. However, irrelevant channels and misleading features unrelated to tasks limit classification performance. To address these problems, we propose an efficient signal processing framework based on particle swarm optimization (PSO) for channel and feature selection, channel selection, and feature selection. Modified Stockwell transforms were used for a feature extraction, and multilevel hybrid PSO-Bayesian linear discriminant analysis was applied to optimization and classification. The BCI Competition III dataset I was used here to confirm the superiority of the proposed scheme. Compared to a method without optimization (89% accuracy), the best classification accuracy of the PSO-based scheme was 99% when less than 10.5% of the original features were used, the test time was reduced by more than 90%, and it achieved Kappa values and F-score of 0.98 and 98.99%, respectively, and better signal-to-noise ratio, thereby outperforming existing algorithms. The results show that the channel and feature selection scheme can accelerate the speed of convergence to the global optimum and reduce the training time. As the proposed framework can significantly improve classification performance, effectively reduce the number of features, and greatly shorten the test time, it can serve as a reference for related real-time BCI application system research.

Research Article

Efficient Deep Learning Architecture for Detection and Recognition of Thyroid Nodules

Ultrasonography is widely used in the clinical diagnosis of thyroid nodules. Ultrasound images of thyroid nodules have different appearances, interior features, and blurred borders that are difficult for a physician to diagnose into malignant or benign types merely through visual recognition. The development of artificial intelligence, especially deep learning, has led to great advances in the field of medical image diagnosis. However, there are some challenges to achieve precision and efficiency in the recognition of thyroid nodules. In this work, we propose a deep learning architecture, you only look once v3 dense multireceptive fields convolutional neural network (YOLOv3-DMRF), based on YOLOv3. It comprises a DMRF-CNN and multiscale detection layers. In DMRF-CNN, we integrate dilated convolution with different dilation rates to continue passing the edge and the texture features to deeper layers. Two different scale detection layers are deployed to recognize the different sizes of the thyroid nodules. We used two datasets to train and evaluate the YOLOv3-DMRF during the experiments. One dataset includes 699 original ultrasound images of thyroid nodules collected from a local health physical center. We obtained 10,485 images after data augmentation. Another dataset is an open-access dataset that includes ultrasound images of 111 malignant and 41 benign thyroid nodules. Average precision (AP) and mean average precision (mAP) are used as the metrics for quantitative and qualitative evaluations. We compared the proposed YOLOv3-DMRF with some state-of-the-art deep learning networks. The experimental results show that YOLOv3-DMRF outperforms others on mAP and detection time on both the datasets. Specifically, the values of mAP and detection time were 90.05 and 95.23% and 3.7 and 2.2 s, respectively, on the two test datasets. Experimental results demonstrate that the proposed YOLOv3-DMRF is efficient for detection and recognition of thyroid nodules for ultrasound images.

Research Article

Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme

Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL prediction of a turbofan engine by integrating an autoencoder (AE) with a deep convolutional generative adversarial network (DCGAN). In the pretraining stage, the reconstructed data of the AE not only participate in its error reconstruction but also take part in the DCGAN parameter training as the generated data of the DCGAN. Through double-error reconstructions, the capability of feature extraction is enhanced, and high-level abstract information is obtained. In the fine-tuning stage, a long short-term memory (LSTM) network is used to extract the sequential information from the features to predict the RUL. The effectiveness of the proposed scheme is verified on the NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset. The superiority of the proposed method is demonstrated via excellent prediction performance and comparisons with other existing state-of-the-art prognostics. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising prediction approach and an efficient feature extraction scheme.

Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication37 days
CiteScore4.700
Impact Factor2.284
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.