Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication38 days
CiteScore2.270
Impact Factor2.154
 Submit

A Hybrid Pathfinder Optimizer for Unconstrained and Constrained Optimization Problems

Read the full article

 Journal profile

Computational Intelligence and Neuroscience is a forum for the interdisciplinary field of neural computing, neural engineering and artificial intelligence. The journal’s focus is on intelligent systems for computational neuroscience.

 Editor spotlight

Chief Editor, Professor Cichocki, engages in world-leading research in the field of artificial intelligence and biomedical applications of advanced data analytics technologies.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae Search with Damping Factor

There are two problems in the traditional spectral clustering algorithm. Firstly, when it uses Gaussian kernel function to construct the similarity matrix, different scale parameters in Gaussian kernel function will lead to different results of the algorithm. Secondly, K-means algorithm is often used in the clustering stage of the spectral clustering algorithm. It needs to initialize the cluster center randomly, which will result in the instability of the results. In this paper, an improved spectral clustering algorithm is proposed to solve these two problems. In constructing a similarity matrix, we proposed an improved Gaussian kernel function, which is based on the distance information of some nearest neighbors and can adaptively select scale parameters. In the clustering stage, beetle antennae search algorithm with damping factor is proposed to complete the clustering to overcome the problem of instability of the clustering results. In the experiment, we use four artificial data sets and seven UCI data sets to verify the performance of our algorithm. In addition, four images in BSDS500 image data sets are segmented in this paper, and the results show that our algorithm is better than other comparison algorithms in image segmentation.

Research Article

A New Volumetric CNN for 3D Object Classification Based on Joint Multiscale Feature and Subvolume Supervised Learning Approaches

The advancement of low-cost RGB-D and LiDAR three-dimensional (3D) sensors has permitted the obtainment of the 3D model easier in real-time. However, making intricate 3D features is crucial for the advancement of 3D object classifications. The existing volumetric voxel-based CNN approaches have achieved remarkable progress, but they generate huge computational overhead that limits the extraction of global features at higher resolutions of 3D objects. In this paper, a low-cost 3D volumetric deep convolutional neural network is proposed for 3D object classification based on joint multiscale hierarchical and subvolume supervised learning strategies. Our proposed deep neural network inputs 3D data, which are preprocessed by implementing memory-efficient octree representation, and we propose to limit the full layer octree depth to a certain level based on the predefined input volume resolution for storing high-precision contour features. Multiscale features are concatenated front multilevel octree depths inside the network, aiming to adaptively generate high-level global features. The strategy of the subvolume supervision approach is to train the network on subparts of the 3D object in order to learn local features. Our framework has been evaluated with two publicly available 3D repositories. Experimental results demonstrate the effectiveness of our proposed method where the classification accuracy is improved in comparison to existing volumetric approaches, and the memory consumption ratio and run-time are significantly reduced.

Research Article

Bacterial Foraging Optimization Based on Self-Adaptive Chemotaxis Strategy

Bacterial foraging optimization (BFO) algorithm is a novel swarm intelligence optimization algorithm that has been adopted in a wide range of applications. However, at present, the classical BFO algorithm still has two major drawbacks: one is the fixed step size that makes it difficult to balance exploration and exploitation abilities; the other is the weak connection among the bacteria that takes the risk of getting to the local optimum instead of the global optimum. To overcome these two drawbacks of the classical BFO, the BFO based on self-adaptive chemotaxis strategy (SCBFO) is proposed in this paper. In the SCBFO algorithm, the self-adaptive chemotaxis strategy is designed considering two aspects: the self-adaptive swimming based on bacterial search state features and the improvement of chemotaxis flipping based on information exchange strategy. The optimization results of the SCBFO algorithm are analyzed with the CEC 2015 benchmark test set and compared with the results of the classical and other improved BFO algorithms. Through the test and comparison, the SCBFO algorithm proves to be effective in reducing the risk of local convergence, balancing the exploration and the exploitation, and enhancing the stability of the algorithm. Hence, the major contribution in this research is the SCBFO algorithm that provides a novel and practical strategy to deal with more complex optimization tasks.

Research Article

Chinese Emergency Event Recognition Using Conv-RDBiGRU Model

In view of the weak generalization of traditional event recognition methods, the limitation of dependence on field knowledge of expert, the longer train time of deep neural network, and the problem of gradient dispersion, the neural network joint model, Conv-RDBiGRU, integrated residual structure was proposed. Firstly, text corpus is preprocessed by word segmentation and stop words processing and uses word embedding to form the matrix of word vectors. Then, local semantic features are extracted through convolution operation, and deep context semantic features are extracted through RDBiGRU. Finally, the learned features are activated by softmax function and the recognition results are output. The novelty of work is that we integrate residual structure into recurrent neural network and combine these methods and field of application. The simulation results show that this method improves precision and recall of Chinese emergency event recognition, and the F-value is better than other methods.

Research Article

Prediction of Cognitive Decline in Temporal Lobe Epilepsy and Mild Cognitive Impairment by EEG, MRI, and Neuropsychology

Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy, memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively assessed patients with temporal lobe epilepsy (N = 9), mild cognitive impairment (N = 19), and subjective cognitive complaints (N = 4) and healthy controls (N = 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. The best sensitivity/specificity for decline was 72%/82% for executive functions based on a feature combination from MRI volumetry and EEG partial coherence during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology; 84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a more general model of cognitive performance decline.

Research Article

An Adaptive Shrinking Grid Search Chaotic Wolf Optimization Algorithm Using Standard Deviation Updating Amount

To improve the optimization quality, stability, and speed of convergence of wolf pack algorithm, an adaptive shrinking grid search chaotic wolf optimization algorithm using standard deviation updating amount (ASGS-CWOA) was proposed. First of all, a strategy of adaptive shrinking grid search (ASGS) was designed for wolf pack algorithm to enhance its searching capability through which all wolves in the pack are allowed to compete as the leader wolf in order to improve the probability of finding the global optimization. Furthermore, opposite-middle raid method (OMR) is used in the wolf pack algorithm to accelerate its convergence rate. Finally, “Standard Deviation Updating Amount” (SDUA) is adopted for the process of population regeneration, aimed at enhancing biodiversity of the population. The experimental results indicate that compared with traditional genetic algorithm (GA), particle swarm optimization (PSO), leading wolf pack algorithm (LWPS), and chaos wolf optimization algorithm (CWOA), ASGS-CWOA has a faster convergence speed, better global search accuracy, and high robustness under the same conditions.

Computational Intelligence and Neuroscience
 Journal metrics
Acceptance rate28%
Submission to final decision79 days
Acceptance to publication38 days
CiteScore2.270
Impact Factor2.154
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.