Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2010 (2010), Article ID 307254, 5 pages
http://dx.doi.org/10.1155/2010/307254
Research Article

Online Detection of P300 and Error Potentials in a BCI Speller

1IIT-Unit, Department of Electronics and Information, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2IIT-Unit, Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received 12 July 2009; Accepted 24 November 2009

Academic Editor: Sara L. Gonzalez

Copyright © 2010 Bernardo Dal Seno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked-potential correlates of stimulus uncertainty,” Science, vol. 150, no. 3700, pp. 1187–1188, 1965. View at Google Scholar · View at Scopus
  2. E. Donchin, K. M. Spencer, and R. Wijesinghe, “The mental prosthesis: assessing the speed of a P300-based brain-computer interface,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 174–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Bayliss, S. A. Inverso, and A. Tentler, “Changing the P300 brain computer interface,” Cyberpsychology & Behavior, vol. 7, no. 6, pp. 694–704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Piccione, F. Giorgi, P. Tonin et al., “P300-based brain computer interface: reliability and performance in healthy and paralysed participants,” Clinical Neurophysiology, vol. 117, no. 3, pp. 531–537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Vaughan, D. J. McFarland, G. Schalk et al., “The wadsworth BCI research and development program: at home with BCI,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 229–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke, “Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks,” Electroencephalography and Clinical Neurophysiology, vol. 78, no. 6, pp. 447–455, 1991. View at Google Scholar · View at Scopus
  7. W. J. Gehring, B. Goss, M. G. H. Coles, D. E. Meyer, and E. Donchin, “A neural system for error detection and compensation,” Psychological Science, vol. 4, no. 6, pp. 385–390, 1993. View at Publisher · View at Google Scholar
  8. M. Falkenstein, “ERP correlates of erroneous performance,” in Errors, Conflicts, and the Brain: Current Opinions on Performance Monitoring, M. Ullsperger and M. Falkenstein, Eds., pp. 5–14, 2004. View at Google Scholar
  9. G. Schalk, J. R. Wolpaw, D. J. McFarland, and G. Pfurtscheller, “EEG-based communication: presence of an error potential,” Clinical Neurophysiology, vol. 111, no. 12, pp. 2138–2144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. P. W. Ferrez and J. del R. Millán, “You are wrong!—automatic detection of interaction errors from brain waves,” in Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI '05), pp. 1413–1418, Edinburgh, UK, August 2005.
  11. P. W. Ferrez and J. del R. Millán, “Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy,” in Proceedings of the 4th International Brain-Computer Interface Workshop & Training Course, pp. 197–202, Graz, Austria, September 2008.
  12. J. Mellinger and G. Schalk, “BCI2000: a general-purpose software platform for BCI research,” in Towards Brain-Computer Interfacing, G. Dornhege, J. del R. Millán, T. Hinterberger, D. J. McFarland, and K.-R. Müller, Eds., MIT Press, Cambridge, Mass, USA, 2007. View at Google Scholar
  13. B. Dal Seno, Toward an integrated P300- and ErrP-based brain-computer interface, Ph.D. thesis, Politecnico di Milano, Milan, Italy, 2009.
  14. S. le Cessie and J. C. van Houwelingen, “Ridge estimators in logistic regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992. View at Google Scholar
  15. B. Dal Seno, M. Matteucci, and L. Mainardi, “A genetic algorithm for automatic feature extraction in P300 detection,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '08), pp. 3145–3152, Hong Kong, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ester, H.-P. Kriegel, J. Sander, and X.-A. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD '96), pp. 226–231, AAAI Press, Portland, Ore, USA, August 1996.
  17. B. Dal Seno, M. Matteucci, and L. Mainardi, “The utility metric: a novel method to assess the overall performance of discrete brain-computer interfaces,” IEEE Transactions on Neural Systems and Rehabilitation Engineering. In press.
  18. G. Visconti, B. Dal Seno, M. Matteucci, and L. Mainardi, “Automatic recognition of error potentials in a P300-based brain-computer interface,” in Proceedings of the 4th International Brain-Computer Interface Workshop & Training Course, pp. 238–243, Graz, Austria, September 2008.
  19. B. Blankertz, G. Dornhege, R. Krepki et al., “Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 127–131, 2003. View at Publisher · View at Google Scholar · View at Scopus