Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2010, Article ID 836346, 13 pages
http://dx.doi.org/10.1155/2010/836346
Research Article

Spike Sorting of Muscle Spindle Afferent Nerve Activity Recorded with Thin-Film Intrafascicular Electrodes

1Vision Institute, 17 rue Moreau, 75012 Paris, France
2LIRMM/INRIA, University of Montpellier 2, 161 Rue Ada, 34095 Montpellier Cedex 5, France
3Biomedical Engineering Department, Indiana University-Purdue University Indianapolis, 723 W. Michigan St - SL220F, Indianapolis, IN 46202, USA
4Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Bajersvej 7 D3, DK-9220 Aalborg, Denmark

Received 28 February 2009; Revised 5 December 2009; Accepted 15 January 2010

Academic Editor: Nitish Thakor

Copyright © 2010 Milan Djilas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Haugland and J. A. Hoffer, “Slip information provided by nerve cuff signals: application in closed-loop control of functional electrical stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 2, no. 1, pp. 29–36, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Hoffer, R. B. Stein, M. K. Haugland et al., “Neural signals for command control and feedback in functional neuromuscular stimulation: a review,” Journal of Rehabilitation Research and Development, vol. 33, no. 2, pp. 145–157, 1996. View at Google Scholar · View at Scopus
  3. T. Sinkjær, “Integrating sensory nerve signal into neural prosthesis devices,” Neuromodulation, vol. 3, no. 1, pp. 35–41, 2000. View at Google Scholar · View at Scopus
  4. K. D. Strange and J. A. Hoffer, “Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking,” IEEE Transactions on Rehabilitation Engineering, vol. 7, no. 3, pp. 289–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, McGraw-Hill, Boston, Mass, USA, 4th edition, 2000.
  6. K. Yoshida and K. Horch, “Closed-loop control of ankle position using muscle afferent feedback with functional neuromuscular stimulation,” IEEE Transactions on Biomedical Engineering, vol. 43, no. 2, pp. 167–176, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. T. Mortimer, “Motor prostheses,” in Handbook of Physiology: The Nervous System, V. B. Brooks, Ed., American Physiological Society, Bethesda, Md, USA, 1981. View at Google Scholar
  8. W. Jensen, T. Sinkjær, and F. Sepulveda, “Improving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, no. 3, pp. 133–139, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Micera, W. Jensen, F. Sepulveda, R. R. Riso, and T. Sinkjær, “Neuro-fuzzy extraction of angular information from muscle afferents for ankle control during standing in paraplegic subjects: an animal model,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 7, pp. 787–794, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. R. Riso, F. K. Mosallaie, W. Jensen, and T. Sinkjær, “Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 244–258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Upshaw and T. Sinkjær, “Digital signal processing algorithms for the detection of afferent nerve activity recorded from cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 172–181, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Chemineau, V. Schnabel, and K. Yoshida, “A modeling study of the recording selectivity of longitudinal intrafascicular electrodes,” in Proceedings of the 9th Annual Conference of the International FES Society, Bournemouth, UK, 2004.
  13. E. V. Goodall and K. W. Horch, “Separation of action potentials in multiunit intrafascicular recordings,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 3, pp. 289–295, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. V. Goodall, K. W. Horch, T. G. McNaughton, and C. M. Lybbert, “Analysis of single-unit firing patterns in multi-unit intrafascicular recordings,” Medical and Biological Engineering and Computing, vol. 31, no. 3, pp. 257–267, 1993. View at Google Scholar · View at Scopus
  15. J. A. Malmstrom, T. G. McNaughton, and K. W. Horch, “Recording properties and biocompatibility of chronically implanted polymer-based intrafascicular electrodes,” Annals of Biomedical Engineering, vol. 26, no. 6, pp. 1055–1064, 1998. View at Google Scholar · View at Scopus
  16. K. Yoshida and R. B. Stein, “Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 2, pp. 226–234, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Stieglitz, M. Schuettler, and K. P. Koch, “Implantable biomedical microsystems for neural prostheses,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 5, pp. 58–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Djilas, C. Azevedo-Coste, D. Guiraud, and K. Yoshida, “Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 5, pp. 445–453, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. Azevedo and K. Yoshida, “Towards a model-based estimator of muscle length and force using muscle afferent signals for real time FES control,” in Proceedings of the International Conference on Computer as a Tool (EUROCON '05), vol. 1, pp. 44–47, Belgrade, Serbia, November 2005.
  20. M. Djilas, C. Azevedo-Coste, D. Guiraud, and K. Yoshida, “Interpretation of muscle spindle afferent nerve response to passive muscle stretch recorded with thin-film longitudinal intrafascicular electrodes,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 5, pp. 445–453, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,” Network, vol. 9, no. 4, pp. R53–R78, 1998. View at Google Scholar · View at Scopus
  22. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. A. Diedrich, W. Charoensuk, R. J. Brychta, A. C. Ertl, and R. Shiavi, “Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 1, pp. 41–50, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. Citi, J. Carpaneto, K. Yoshida et al., “On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes,” Journal of Neuroscience Methods, vol. 172, no. 2, pp. 294–302, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. R. Coifman and D. L. Donoho, Translation-Invariant De-Noising, Yale University and Stanford University, 1995.
  26. K. H. Kim and S. J. Kim, “A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 8, pp. 999–1011, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, Wavelets and Their Applications, ISTE, 1st edition, 2007.
  28. J. Bourien, J. Ruel, L. Senhadji, and J. L. Puel, “Comparison of three spike detectors dedicated to single unit action potentials of the auditory nerve,” in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1430–1433, Lyon, France, 2007.
  29. E. V. Goodall and K. W. Horch, “Identification of single units in multi-unit recordings from peripheral nerves,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1166–1167, 1988.
  30. E. M. Schmidt, “Computer separation of multi-unit neuroelectric data: a review,” Journal of Neuroscience Methods, vol. 12, no. 2, pp. 95–111, 1984. View at Publisher · View at Google Scholar · View at Scopus
  31. E. M. Glaser, “Separation of neuronal activity by waveform analysis,” in Advances in Biomedical Engineering, vol. 1, pp. 77–136, Academic Press, New York, NY, USA, 1971. View at Google Scholar
  32. E. M. Glaser and W. B. Marks, “On-line separation of interleaved neuronal pulse sequences,” in Data Acquisitiona and Processing in Biology and Medicine, vol. 5, pp. 137–156, 1968. View at Google Scholar
  33. T. G. McNaughton and K. W. Horch, “Action potential classification with dual channel intrafascicular electrodes,” IEEE Transactions on Biomedical Engineering, vol. 41, no. 6, pp. 609–616, 1994. View at Google Scholar · View at Scopus
  34. K. Mirfakhraei and K. Horch, “Classification of action potentials in multi-unit intrafascicular recordings using neural network pattern-recognition techniques,” IEEE Transactions on Biomedical Engineering, vol. 41, no. 1, pp. 89–90, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. K. Mirfakhraei and K. Horch, “Recognition of temporally changing action potentials in multiunit neural recordings,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 2, pp. 123–131, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. L. McNaughton, J. O'Keefe, and C. A. Barnes, “The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system for multiple unit records,” Journal of Neuroscience Methods, vol. 8, no. 4, pp. 391–397, 1983. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Pages and U. Proske, “Effect of halothane anesthesia on responses from primary endings of muscle spindles in the cat,” Experimental Neurology, vol. 28, no. 3, pp. 393–402, 1970. View at Google Scholar · View at Scopus
  38. C. S. Sherrington and E. H. Hering, “On reciprocal innervation of antagonist muscles. Fourth note,” Proceedings of the Royal Society of London B, vol. 62, pp. 183–187, 1897-1898. View at Google Scholar
  39. J. Y. Wei, J. Simon, M. Randic, and P. R. Burgess, “Joint angle signaling by muscle spindle receptors,” Brain Research, vol. 370, no. 1, pp. 108–118, 1986. View at Google Scholar · View at Scopus
  40. G. M. Goodwin, D. I. Mccloskey, and P. B. C. Matthews, “Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception?” Science, vol. 175, no. 4028, pp. 1382–1384, 1972. View at Google Scholar · View at Scopus
  41. J. K. Jansen and P. B. Matthews, “The central control of the dynamic response of muscle spindle receptors,” The Journal of Physiology, vol. 161, pp. 357–378, 1962. View at Google Scholar · View at Scopus
  42. A. R. Kralj and T. Bajd, Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC, Boca Raton, Fla, USA, 1st edition, 1989.
  43. S. Demura and T. Kitabayashi, “Comparison of power spectrum characteristics of body sway during a static upright standing posture in healthy elderly people and young adults,” Perceptual and Motor Skills, vol. 102, no. 2, pp. 467–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Yoneda and K. Tokumasu, “Frequency analysis of body sway in the upright posture. Statistical study in cases of peripheral vestibular disease,” Acta Oto-Laryngologica, vol. 102, no. 1-2, pp. 87–92, 1986. View at Google Scholar · View at Scopus
  45. D. O. Olguín, F. B. Lara, and S. O. M. Chapa, “Adaptive notch filter for EEG signals based on the LMS algorithm with variable step-size parameter,” in Proceedings of the 39th International Conference on Information Sciences and Systems, Baltimore, Md, USA, 2005.
  46. E. T. von Brücke, M. Early, and A. Forbes, “Recovery of responsiveness in motor and sensory fibers during the relative refractory period,” Journal of Neurophysiology, vol. 4, pp. 80–91, 1941. View at Google Scholar
  47. P. B. Matthews and R. B. Stein, “The sensitivity of muscle spindle afferents to small sinusoidal changes of length,” Journal of Physiology, vol. 200, no. 3, pp. 723–743, 1969. View at Google Scholar · View at Scopus
  48. M. Djilas, K. Yoshida, M. Kurstjens, and C. Azevedo-Coste, “Improving the signal-to-noise ratio in recordings with thin-film longitudinal intrafascicular electrodes using shielding cuffs,” in Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering, Cohala Coast, Hawaii, USA, 2007.