Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2011, Article ID 217987, 9 pages
http://dx.doi.org/10.1155/2011/217987
Research Article

Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

1Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, Zwijnaarde, 9052 Gent, Belgium
2Department of Empirical Inference, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
3P.C. Dr. Guislain, Fr. Ferrerlaan 88A, 9000 Gent, Belgium
4Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium

Received 14 March 2011; Revised 28 July 2011; Accepted 29 July 2011

Academic Editor: Fabio Babiloni

Copyright © 2011 Dieter Devlaminck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6, pp. 510–523, 1988. View at Google Scholar · View at Scopus
  2. S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 172–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Pfurtscheller and F. H. Lopes Da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. J. Koles, “The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 6, pp. 440–447, 1991. View at Google Scholar · View at Scopus
  5. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clinical Neurophysiology, vol. 110, no. 5, pp. 787–798, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441–446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K. Müller, “Optimizing spatio-temporal filters for improving Brain-Computer Interfacing,” in Advances in Neural Information Processing Systems, vol. 18, pp. 315–322, Vancouver, Canada, 2006.
  8. B. Blankertz, M. Kawanabe, R. Tomioka, F. Hohlefeld, V. Nikulin, and K. Müller, “Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing,” in Advances in Neural Information Processing Systems, vol. 20, pp. 113–120, Vancouver, Canada, 2008.
  9. M. Krauledat, M. Schroder, B. Blankertz, and K. Müller, “Reducing calibration time for brain-computer interfaces: a clustering approach,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2006.
  10. T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple tasks with kernel methods,” Journal of Machine Learning Research, vol. 6, pp. 615–637, 2005. View at Google Scholar · View at Scopus
  11. T. Kato, H. Kashima, M. Sugiyama, and K. Asai, “Multi-task learning via conic programming,” in Advances in Neural Information Processing Systems, vol. 20, pp. 737–744, Vancouver, Canada, 2008.
  12. M. Alamgir, M. Grosse-Wentrup, and Y. Altun, “Multitask learning for brain-computer interfaces,” in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 17–24, Sardinia, Italy, 2010.
  13. G. Dornhege, B. Blankertz, G. Curio, and K. R. Müller, “Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 993–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang, “An optimization algorithm for clustering using weighted dissimilarity measures,” Pattern Recognition, vol. 37, no. 5, pp. 943–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. P. Shen, Y. P. Duan, and Y. G. Pei, “A simplicial branch and duality bound algorithm for the sum of convex-convex ratios problem,” Journal of Computational and Applied Mathematics, vol. 223, no. 1, pp. 145–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Lotte and C. Guan, “Learning from other subjects helps reducing brain-computer interface calibration time,” in the 35th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, pp. 614–617, Dallas, Tex, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Bishop, Pattern Recognition and Machine Learning, Springer, Berlin, Germany, 2008.