Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2011, Article ID 406391, 7 pages
http://dx.doi.org/10.1155/2011/406391
Research Article

PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

1Department of Computer Science, Department of Electrical Engineering, Texas Tech University, Lubbock TX 79409-3104, USA
2ECHO Labs, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6

Received 31 August 2010; Revised 26 October 2010; Accepted 31 December 2010

Academic Editor: Sylvain Baillet

Copyright © 2011 Forrest Sheng Bao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Dauwels, F. Vialatte, and A. Cichocki, “A comparative study of synchrony measures for the early detection of Alzheimer's disease based on EEG,” in Proceedings of the 14th International Conference on Neural Information Processing (ICONIP '07), vol. 4984 of Lecture Notes in Computer Science, pp. 112–125, 2008. View at Publisher · View at Google Scholar
  2. A. A. Petrosian, D. V. Prokhorov, W. Lajara-Nanson, and R. B. Schiffer, “Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG,” Clinical Neurophysiology, vol. 112, no. 8, pp. 1378–1387, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. S. Bao, D. Y. C. Lie, and Y. Zhang, “A new approach to automated epileptic diagnosis using EEG and probabilistic neural network,” in Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '08), vol. 2, pp. 482–486, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Dauwels, E. Eskandar, and S. Cash, “Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 2180–2183, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt, “One-class novelty detection for seizure analysis from intracranial EEG,” Journal of Machine Learning Research, vol. 7, pp. 1025–1044, 2006. View at Google Scholar · View at Scopus
  6. C. W. Ko and H. W. Chung, “Automatic spike detection via an artificial neural network using raw EEG data: effects of data preparation and implications in the limitations of online recognition,” Clinical Neurophysiology, vol. 111, no. 3, pp. 477–481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 3, pp. 288–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. S. Bao, J. M. Gao, J. Hu, D. Y. C. Lie, Y. Zhang, and K. J. Oommen, “Automated epilepsy diagnosis using interictal scalp EEG,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 6603–6607, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Lehnertz, F. Mormann, T. Kreuz et al., “Seizure prediction by nonlinear EEG analysis,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 1, pp. 57–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. E. O'Sullivan-Greene, I. Mareels, D. Freestone, L. Kulhmann, and A. Burkitt, “A paradigm for epileptic seizure prediction using a coupled oscillator model of the brain,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 6428–6431, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. S. Bao, Y.-L. Li, J.-M. Gao, and J. Hu, “Performance of dynamic features in classifying scalp epileptic interictal and normal EEG,” in Proceedings of 32nd International Conference of IEEE Engineering in Medicine and Biology Society (EMBC '10), 2010.
  12. R. Q. Quiroga, S. Blanco, O. A. Rosso, H. Garcia, and A. Rabinowicz, “Searching for hidden information with gabor transform in generalized tonic-clonic seizures,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 4, pp. 434–439, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Petrosian, “Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns,” in Proceedings of the 8th IEEE Symposium on Computer-Based Medical Systems, pp. 212–217, June 1995. View at Scopus
  14. T. Higuchi, “Approach to an irregular time series on the basis of the fractal theory,” Physica D, vol. 31, no. 2, pp. 277–283, 1988. View at Google Scholar · View at Scopus
  15. B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalography and Clinical Neurophysiology, vol. 29, no. 3, pp. 306–310, 1970. View at Google Scholar · View at Scopus
  16. T. Inouye, K. Shinosaki, H. Sakamoto et al., “Quantification of EEG irregularity by use of the entropy of the power spectrum,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 3, pp. 204–210, 1991. View at Google Scholar · View at Scopus
  17. S. J. Roberts, W. Penny, and I. Rezek, “Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing,” Medical and Biological Engineering and Computing, vol. 37, no. 1, pp. 93–98, 1999. View at Google Scholar · View at Scopus
  18. C. J. James and D. Lowe, “Extracting multisource brain activity from a single electromagnetic channel,” Artificial Intelligence in Medicine, vol. 28, no. 1, pp. 89–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A regularity statistic for medical data analysis,” Journal of Clinical Monitoring and Computing, vol. 7, no. 4, pp. 335–345, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos, vol. 5, no. 1, pp. 82–87, 1995. View at Google Scholar
  21. T. Balli and R. Palaniappan, “A combined linear & nonlinear approach for classification of epileptic EEG signals,” in Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering (NER '09), pp. 714–717, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state,” Physical Review E, vol. 64, no. 6, Article ID 061907, 8 pages, 2001. View at Google Scholar · View at Scopus