Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2012 (2012), Article ID 654895, 10 pages
http://dx.doi.org/10.1155/2012/654895
Research Article

Radial Basis Function Neural Network Application to Power System Restoration Studies

1Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
2Department of Electrical Engineering, University of Kashan, Kashan 8731751167, Iran
3Grenoble Electrical Engineering Lab (G2ELab), Grenoble INP, BP46, 38402 Saint Martin d'Hères, Cedex, France

Received 5 March 2012; Revised 29 April 2012; Accepted 1 May 2012

Academic Editor: Justin Dauwels

Copyright © 2012 Iman Sadeghkhani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Adibi, “Overvoltage control during restoration,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1464–1470, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ketabi, A. M. Ranjbar, and R. Feuillet, “Analysis and control of temporary overvoltages for automated restoration planning,” IEEE Transactions on Power Delivery, vol. 17, no. 4, pp. 1121–1127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Adibi, J. N. Borkoski, and R. J. Kafka, “Analytical tool requirements for power system restoration,” IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1582–1591, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Hayashi, D. P. Roberts, K. Walve et al., “Modelling and simulation of Black Start and restoration of an electric power system. Results of a questionnaire,” Electra, no. 131, pp. 155–169, 1990. View at Google Scholar · View at Scopus
  5. I. Sadeghkhani, A. Ketabi, and R. Feuillet, “New approach to harmonic overvoltages reduction during transformer energization via controlled switching,” in Proceedings of the 15th International Conference on Intelligent System Applications to Power Systems (ISAP '09), Curitiba, Brazil, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Sadeghkhani, A. Ketabi, and R. Feuillet, “Estimation of temporary overvoltages during power system restoration using artificial neural network,” in Proceedings of the 15th International Conference on Intelligent System Applications to Power Systems (ISAP '09), Curitiba, Brazil, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Taher and I. Sadeghkhani, “Estimation of magnitude and time duration of temporary overvoltages using ANN in transmission lines during power system restoration,” Simulation Modelling Practice and Theory, vol. 18, no. 6, pp. 787–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Sadeghkhani, Using artificial neural network for estimation of switching and resonance overvoltages during bulk power system restoration [M.S. thesis], Department of Electrical Engineering, University of Kashan, 2009.
  9. I. Sadeghkhani, A. Yazdekhasti, A. Mortazavian, and N. Haratian, “Radial basis function neural network based approach to estimate transformer harmonic overvoltages,” Advances in Computer Science and its Applications, vol. 1, no. 1, pp. 38–44, 2012. View at Google Scholar
  10. D. Thukaram, H. P. Khincha, and S. Khandelwal, “Estimation of switching transient peak overvoltages during transmission line energization using artificial neural network,” Electric Power Systems Research, vol. 76, no. 4, pp. 259–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ketabi and I. Sadeghkhani, Electric Power Systems Simulation Using MATLAB, Morsal Publications, 2011.
  12. G. Sybille, P. Brunelle, L. Hoang, L. A. Dessaint, and K. Al-Haddad, “Theory and applications of power system blockset, a MATLAB/Simulink-based simulation tool for power systems,” in Proceedings of the IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 774–779, 2000.
  13. M. M. Duró, “Damping modelling in transformer energization studies for system restoration: some standard models compared to field measurements,” in Proceedings of the IEEE Bucharest PowerTech, Bucharest, Romania, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. G. Boliaris, J. M. Prousalidis, N. D. Hatziargyriou, and B. C. Papadias, “Simulation of long transmission lines energization for black start studies,” in Proceedings of the 7th Mediterranean Electrotechnical Conference (MELECON '94), pp. 1093–1096, April 1994. View at Scopus
  15. G. Sybille, M. M. Gavrilovic, J. Belanger, and V. Q. Do, “Transformer saturation effects on EHV system overvoltages,” IEEE Transactions on Power Apparatus and Systems, vol. 104, no. 3, pp. 671–680, 1985. View at Google Scholar · View at Scopus
  16. G. Morin, “Service restoration following a major failure on the hydroquebec power system,” IEEE Transactions on Power Delivery, vol. 2, no. 2, pp. 454–463, 1987. View at Google Scholar · View at Scopus
  17. M. Joorabian, S. M. A. T. Asl, and R. K. Aggarwal, “Accurate fault locator for EHV transmission lines based on radial basis function neural networks,” Electric Power Systems Research, vol. 71, no. 3, pp. 195–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. K. Dash, A. K. Pradhan, and G. Panda, “Application of minimal radial basis function neural network to distance protection,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 68–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Haykin, Neural Network: A Comprehensive Foundation, Prentice Hall, 2nd edition, 1998.
  20. S. Wunderlich, M. M. Adibi, R. Fischl, and C. O. D. Nwankpa, “Approach to standing phase angle reduction,” IEEE Transactions on Power Systems, vol. 9, no. 1, pp. 470–478, 1994. View at Publisher · View at Google Scholar · View at Scopus