Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2013, Article ID 369016, 11 pages
http://dx.doi.org/10.1155/2013/369016
Research Article

Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO

1School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China
2State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
3School of Computer Science and Technology, Hubei University of Technology, Wuhan 430068, China

Received 21 March 2013; Revised 16 May 2013; Accepted 21 May 2013

Academic Editor: Cheng-Jian Lin

Copyright © 2013 Jialiang Kou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Shi, A. Ren, and C. Chen, “Agent-based evacuation model of large public buildings under fire conditions,” Automation in Construction, vol. 18, no. 3, pp. 338–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Chen and E. Miller-Hooks, “The building evacuation problem with shared information,” Naval Research Logistics, vol. 55, no. 4, pp. 363–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Tayfur and K. Taaffe, “A model for allocating resources during hospital evacuations,” Computers and Industrial Engineering, vol. 57, no. 4, pp. 1313–1323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Fang, W. Song, J. Zhang, and H. Wu, “Experiment and modeling of exit-selecting behaviors during a building evacuation,” Physica A, vol. 389, no. 4, pp. 815–824, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Saadatseresht, A. Mansourian, and M. Taleai, “Evacuation planning using multiobjective evolutionary optimization approach,” European Journal of Operational Research, vol. 198, no. 1, pp. 305–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Stepanov and J. M. Smith, “Multi-objective evacuation routing in transportation networks,” European Journal of Operational Research, vol. 198, no. 2, pp. 435–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Fang, X. Zong, Q. Li, Q. Li, and S. Xiong, “Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach,” Journal of Transport Geography, vol. 19, no. 3, pp. 443–451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. S. Elliott, Electromagnetics: History, Theory, and Applications, Wiley, Hoboken, NJ, USA, 1999.
  9. M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 26, no. 1, pp. 29–41, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Pu and S. Zlatanova, “Evacuation route calculation of inner buildings,” in Geo-Information for Disaster Management, P. van Oosterom, S. Zlatanova, and E. M. Fendel, Eds., pp. 1143–1161, Springer, Berlin, Germany, 2005. View at Google Scholar
  11. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  12. A. Rahman, A. K. Mahmood, and E. Schneider, “Using agent-based simulation of human behavior to reduce evacuation time,” in Proceedings of the 11th Pacific Rim International Conference on Multi-Agents: Intelligent Agents and Multi-Agent Systems, pp. 357–369, 2008.
  13. Z. Xue, A particle swarm optimization based multi-agent stochastic evacuation simulation model [Ph.D. thesis], University of New York, 2009.
  14. R. M. Tavares and E. R. Galea, “Numerical optimisation techniques applied to evacuation analysis,” in Pedestrian and Evacuation Dynamics 2008, W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg, Eds., pp. 555–561, Springer, Berlin, Germany, 2010. View at Google Scholar
  15. H. D. Sherali, T. B. Carter, and A. G. Hobeika, “A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions,” Transportation Research Part B, vol. 25, no. 6, pp. 439–452, 1991. View at Google Scholar · View at Scopus
  16. C. Xie, D.-Y. Lin, and S. Travis Waller, “A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies,” Transportation Research E, vol. 46, no. 3, pp. 295–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Cai and A. Rahman, “A method to develop and optimize the placement of road barriers in emergency evacuation for university campuses,” in Proceedings of the Construction Research Congress: Innovation for Reshaping Construction Practice, pp. 409–419, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Sbayti and H. S. Mahmassani, “Optimal scheduling of evacuation operations,” Transportation Research Record, no. 1964, pp. 238–246, 2006. View at Google Scholar · View at Scopus
  19. S. C. Pursals and F. G. Garzón, “Optimal building evacuation time considering evacuation routes,” European Journal of Operational Research, vol. 192, no. 2, pp. 692–699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Lin, S. M. Lo, H. C. Huang, and K. K. Yuen, “On the use of multi-stage time-varying quickest time approach for optimization of evacuation planning,” Fire Safety Journal, vol. 43, no. 4, pp. 282–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Ancǎu and C. Caizar, “The computation of Pareto-optimal set in multicriterial optimization of rapid prototyping processes,” Computers and Industrial Engineering, vol. 58, no. 4, pp. 696–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Izquierdo, I. Montalvo, R. Pérez, and V. S. Fuertes, “Forecasting pedestrian evacuation times by using swarm intelligence,” Physica A, vol. 388, no. 7, pp. 1213–1220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P.-H. Chen and F. Feng, “A fast flow control algorithm for real-time emergency evacuation in large indoor areas,” Fire Safety Journal, vol. 44, no. 5, pp. 732–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent advances,” in Handbook of Metaheuristics, M. Gendreau and Y. Potvin, Eds., vol. 146 of International Series in Operations Research & Management Science, pp. 227–263, Springer, New York, NY, USA, 2nd edition, 2010. View at Google Scholar
  25. M. Bierlaire, G. Antonini, and M. Weber, “Behavioral dynamics for pedestrians, in Moving through nets: the physical and social dimensions of travel,” in Proceedings of the 10th International Conference on Travel Behaviour Research, K. Axhausen, Ed., pp. 1–18, Elsevier, Amsterdam, Netherlands, 2003.
  26. L. D. Han, F. Yuan, and T. Urbanik, “What is an effective evacuation operation?” Journal of Urban Planning and Development, vol. 133, no. 1, pp. 3–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point,” in Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA '09), pp. 87–102, January 2009. View at Publisher · View at Google Scholar · View at Scopus