Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2015, Article ID 704301, 11 pages
http://dx.doi.org/10.1155/2015/704301
Research Article

Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

1System Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Received 26 October 2014; Accepted 16 January 2015

Academic Editor: Francois B. Vialatte

Copyright © 2015 H. A. Hashim and M. A. Abido. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Feedback, Twin Rotor MIMO System User Manual, 1998.
  2. S. F. Toha and M. O. Tokhi, “Real-coded genetic algorithm for parametric modelling of a TRMS,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '09), pp. 2022–2028, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. F. Toha, I. Abd Latiff, M. Mohamad, and M. O. Tokhi, “Parametric modelling of a TRMS using dynamic spread factor particle swarm optimisation,” in Proceedings of the 11th International Conference on Computer Modelling and Simulation (UKSIM '09), pp. 95–100, March 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Ahmad, M. H. Shaheed, A. J. Chipperfield, and M. O. Tokhi, “Nonlinear modelling of a twin rotor MIMO system using radial basis function networks,” in Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON '00), pp. 313–320, October 2000. View at Scopus
  5. J.-G. Juang, M.-T. Huang, and W.-K. Liu, “PID control using presearched genetic algorithms for a MIMO system,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 38, no. 5, pp. 716–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Wen and T.-W. Lu, “Decoupling control of a twin rotor MIMO system using robust deadbeat control technique,” IET Control Theory & Applications, vol. 2, no. 11, pp. 999–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Rahideh and M. H. Shaheed, “Robust model predictive control of a twin rotor MIMO system,” in Proceedings of the IEEE 2009 International Conference on Mechatronics (ICM 09), pp. 1–6, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. López-Martínez, C. Vivas, and M. G. Ortega, “A multivariable nonlinear H∞ controller for a laboratory helicopter,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC '05), pp. 4065–4070, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. T.-S. Kim, J.-H. Yang, Y.-S. Lee, and O.-K. Kwon, “Twin rotors system modeling and bumpless transfer implementation algorithm for LQ control,” in Proceedings of the SICE-ICASE International Joint Conference, pp. 114–119, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rahideh and M. H. Shaheed, “Hybrid fuzzy-PID-based control of a twin rotor MIMO system,” in Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics (IECON '06), pp. 49–54, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. F. Toha and M. O. Tokhi, “Dynamic nonlinear inverse-model based control of a twin rotor system using adaptive neuro-fuzzy inference system,” in Proceedings of the 3rd UKSim European Modelling Symposium on Computer Modelling and Simulation (EMS '09), pp. 107–111, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-W. Tao, J.-S. Taur, Y.-H. Chang, and C.-W. Chang, “A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-inputmulti-output system,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 893–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mondal and C. Mahanta, “Adaptive second-order sliding mode controller for a twin rotor multi-input–multi-output system,” IET Control Theory & Applications, vol. 6, no. 14, pp. 2157–2167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Li, S. Tong, Y. Liu, and T. Li, “Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 1, pp. 164–176, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Tong and Y. Li, “Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 134–146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Zheng, Q.-G. Wang, and T. H. Lee, “Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 686–697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Tong, X. He, Y. Li, and H. Zhang, “Adaptive fuzzy backstepping robust control for uncertain nonlinear systems based on small-gain approach,” Fuzzy Sets and Systems, vol. 161, no. 6, pp. 771–796, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. I. Pan, S. Das, and A. Gupta, “Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay,” ISA Transactions, vol. 50, no. 1, pp. 28–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. K. Saroj and I. Kar, “T-S fuzzy model based controller and observer design for a Twin Rotor MIMO System,” in Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ '13), pp. 1–8, July 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. S.-C. Tong, Y.-M. Li, G. Feng, and T.-S. Li, “Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 4, pp. 1124–1135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Li, S. Tong, and T. Li, “Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones,” IEEE Transactions on Fuzzy Systems, vol. PP, no. 99, p. 1, 2014. View at Publisher · View at Google Scholar
  22. R. C. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995. View at Scopus
  23. K.-B. Lee and J.-H. Kim, “Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 6, pp. 755–766, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. Z.-L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384–391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Mukherjee and S. P. Ghoshal, “Intelligent particle swarm optimized fuzzy PID controller for AVR system,” Electric Power Systems Research, vol. 77, no. 12, pp. 1689–1698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-F. Juang and Y.-C. Chang, “Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 379–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Storn and K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, International Computer Science InstituteDirections, Berkeley, Calif, USA, 1995.
  28. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  29. L. D. S. Coelho and M. W. Pessôa, “A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map,” Expert Systems with Applications, vol. 38, no. 11, pp. 13694–13701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella, “Optimization of delayed-state kalman-filter-based algorithm via differential evolution for sensorless control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 385–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-H. Chen, C.-L. Lin, and C.-T. Lin, “Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 39, no. 4, pp. 459–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Tech. Rep. tr06, Department of Computer Engineering, Faculty of Engineering, Erciyes University, 2005. View at Google Scholar
  33. D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  34. F. S. Abu-Mouti and M. E. El-Hawary, “Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm,” IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2090–2101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. W.-L. Chang, D. Zeng, R.-C. Chen, and S. Guo, “An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks,” International Journal of Machine Learning and Cybernetics, 2013. View at Publisher · View at Google Scholar
  36. E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a Gravitational Search Algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Ghasemi, H. Shayeghi, and H. Alkhatib, “Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm,” International Journal of Electrical Power & Energy Systems, vol. 51, pp. 190–200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, and M.-B. Radac, “Novel adaptive gravitational search algorithm for fuzzy controlled servo systems,” IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 791–800, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Bhattacharya and P. K. Roy, “Solution of multi-objective optimal power flow using gravitational search algorithm,” IET Generation, Transmission & Distribution, vol. 6, no. 8, pp. 751–763, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Niknam, M. R. Narimani, R. Azizipanah-Abarghooee, and B. Bahmani-Firouzi, “Multiobjective optimal reactive power dispatch and voltage control: a new opposition-based self-adaptive modified gravitational search algorithm,” IEEE Systems Journal, vol. 7, no. 4, pp. 742–753, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965. View at Google Scholar · View at MathSciNet
  42. M. A. Abido, “Optimal power flow using particle swarm optimization,” International Journal of Electrical Power and Energy Systems, vol. 24, no. 7, pp. 563–571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. A. E. Ela, M. A. Abido, and S. R. Spea, “Differential evolution algorithm for optimal reactive power dispatch,” Electric Power Systems Research, vol. 81, no. 2, pp. 458–464, 2011. View at Publisher · View at Google Scholar · View at Scopus