Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2017 (2017), Article ID 1742862, 25 pages
https://doi.org/10.1155/2017/1742862
Review Article

Progress in EEG-Based Brain Robot Interaction Systems

1School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
2Department of Computer & Electrical Engineering and Computer Science, California State University, Bakersfield, CA 93311, USA
3State Key Laboratory of Robotics, Shenyang Institute of Automation, Shenyang, Liaoning 110016, China
4Department of Math and Computer Science, West Virginia State University, Institute, WV 25112, USA
5Intelligent Fusion Technology, Inc., Germantown, MD 20876, USA

Correspondence should be addressed to Wei Li; ude.busc@ilw

Received 28 December 2016; Accepted 21 March 2017; Published 5 April 2017

Academic Editor: Hasan Ayaz

Copyright © 2017 Xiaoqian Mao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Amiri, A. Rabbi, L. Azinfar et al., “A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems,” in Brain-Computer Interface Systems—Recent Progress and Future Prospects, InTech, 2013. View at Google Scholar
  2. M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brain-machine interface: instant neural control of a movement signal,” Nature, vol. 416, no. 6877, pp. 141–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Wodlinger, J. E. Downey, E. C. Tyler-Kabara, A. B. Schwartz, M. L. Boninger, and J. L. Collinger, “Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations,” Journal of Neural Engineering, vol. 12, no. 1, Article ID 016011, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Wolpaw, N. Birbaumer, W. J. Heetderks et al., “Brain-computer interface technology: a review of the first international meeting,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 164–173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Burns, H. Adeli, and J. A. Buford, “Brain-computer interface after nervous system injury,” Neuroscientist, vol. 20, no. 6, pp. 639–651, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ortiz-Rosario and H. Adeli, “Brain-computer interface technologies: from signal to action,” Reviews in the Neurosciences, vol. 24, no. 5, pp. 537–552, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. A. B. Schwartz, “Cortical neural prosthetics,” Annual Review of Neuroscience, vol. 27, pp. 487–507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past, present and future,” Trends in Neurosciences, vol. 29, no. 9, pp. 536–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Schmidt, “Single neuron recording from motor cortex as a possible source of signals for control of external devices,” Annals of Biomedical Engineering, vol. 8, no. 4, pp. 339–349, 1980. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. L. Nicolelis, “Brain–machine interfaces to restore motor function and probe neural circuits,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 417–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. R. Hochberg, D. Bacher, B. Jarosiewicz et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, pp. 372–375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. B. Schwartz, X. T. Cui, D. J. Weber, and D. W. Moran, “Brain-controlled interfaces: movement restoration with neural prosthetics,” Neuron, vol. 52, no. 1, pp. 205–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ibáñez, J. I. Serrano, M. D. del Castillo, J. A. Gallego, and E. Rocon, “Online detector of movement intention based on EEG—application in tremor patients,” Biomedical Signal Processing and Control, vol. 8, no. 6, pp. 822–829, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Waldert, H. Preissl, E. Demandt et al., “Hand movement direction decoded from MEG and EEG,” Journal of Neuroscience, vol. 28, no. 4, pp. 1000–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Coyle, T. Ward, C. Markham, and G. McDarby, “On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces,” Physiological Measurement, vol. 25, no. 4, pp. 815–822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. M. Vaughan, W. J. Heetderks, L. J. Trejo et al., “Brain-computer interface technology: a review of the Second International Meeting,” IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 11, no. 2, pp. 94–109, 2003. View at Google Scholar
  18. M. Alimardani, N. Shuichi, and H. Ishiguro, “The effect of feedback presentation on motor imagery performance during BCI-teleoperation of a humanlike robot,” in Proceedings of the 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob '14), pp. 403–408, IEEE, São Carlos, Brazil, August 2014. View at Scopus
  19. A. Finke, A. Knoblauch, H. Koesling, and H. Ritter, “A hybrid brain interface for a humanoid robot assistant,” in Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '11), pp. 7421–7424, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Duan, D. Lin, W. Li, and Z. Zhang, “Design of a multimodal EEG-based hybrid BCI system with visual servo module,” IEEE Transactions on Autonomous Mental Development, vol. 7, no. 4, pp. 332–341, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. G. R. Müller-Putz and G. Pfurtscheller, “Control of an electrical prosthesis with an SSVEP-based BCI,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 361–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Coyle, J. Garcia, A. R. Satti, and T. M. McGinnity, “EEG-based continuous control of a game using a 3 channel motor imagery BCI: BCI game,” in Proceedings of the IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB '11), pp. 1–7, IEEE, Singapore, April 2011. View at Publisher · View at Google Scholar
  23. P. Gergondet, S. Druon, A. Kheddar, C. Hintermüller, C. Guger, and M. Slater, “Using brain-computer interface to steer a humanoid robot,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '11), pp. 192–197, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zhao, W. Li, X. Mao, and M. Li, “SSVEP-based experimental procedure for brain-robot interaction with humanoid robots,” Journal of Visualized Experiments, vol. 2015, no. 105, 2015. View at Publisher · View at Google Scholar
  25. M. Li, W. Li, and H. Zhou, “Increasing N200 potentials via visual stimulus depicting humanoid robot behavior,” International Journal of Neural Systems, vol. 26, no. 1, Article ID 1550039, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Li, M. Li, and W. Li, “Independent component analysis-based channel selection to achieve high performance of N200 and P300 classification,” in Proceedings of the IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing, pp. 384–389, IEEE, Beijing, China, July 2015. View at Publisher · View at Google Scholar
  27. J. Zhao, Q. Meng, W. Li et al., “An OpenViBE-based brainwave control system for Cerebot,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 1169–1174, Shenzhen, China, December 2013.
  28. J. Zhao, W. Li, and M. Li, “Comparative study of SSVEP- and P300-based models for the telepresence control of humanoid robots,” PLoS ONE, vol. 10, no. 11, Article ID e0142168, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Yao, J. Meng, X. Sheng, D. Zhang, and X. Zhu, “A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion,” Journal of Neural Engineering, vol. 12, no. 1, Article ID 016005, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Wang, T. Li, and Z. Huang, “Remote control of an electrical car with SSVEP-Based BCI,” in Proceedings of the IEEE International Conference on Information Theory and Information Security (ICITIS '10), pp. 837–840, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Li, J. Li, S. Liu et al., “Improving the performance of P300-speller with familiar face paradigm using support Vector machine ensemble,” in Proceedings of the International Conference on Network and Information Systems for Computers, pp. 606–610, January 2015.
  32. C.-Y. Chen, C.-W. Wu, C.-T. Lin, and S.-A. Chen, “A novel classification method for motor imagery based on Brain-Computer Interface,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '14), pp. 4099–4102, July 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chae, J. Jeong, and S. Jo, “Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-Based BCI,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1131–1144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Güneysu and H. L. Akin, “An SSVEP based BCI to control a humanoid robot by using portable EEG device,” in Proceedings of the International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 6905–6908, 2013.
  35. H.-L. Jian and K.-T. Tang, “Improving classification accuracy of SSVEP based BCI using RBF SVM with signal quality evaluation,” in Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS '14), pp. 302–306, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Caglayan and R. B. Arslan, “Humanoid robot control with SSVEP on embedded system,” in Proceedings of the 5th International Brain-Computer Interface Meeting: Defining the Future, pp. 260–261, June 2013.
  37. S. M. T. Muller, T. F. Bastos-Filho, and M. Sarcinelli-Filho, “Using a SSVEP-BCI to command a robotic wheelchair,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '11), pp. 957–962, IEEE, Gdansk, Poland, 2011.
  38. R. C. Panicker, S. Puthusserypady, and Y. Sun, “An asynchronous P300 BCI with SSVEP-based control state detection,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 6, pp. 1781–1788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Song, X. Wang, S. Zheng, and Y. Lin, “Mobile robot control by BCI based on motor imagery,” in Proceedings of the 6th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC '14), pp. 383–387, August 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI) system,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Pfurtscheller, “Functional brain imaging based on ERD/ERS,” Vision Research, vol. 41, no. 10-11, pp. 1257–1260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Sellers, Y. Arbel, and E. Donchin, “BCIs that uses event related potentials,” in Brain-Computer Interfaces: Principles and Practice, J. Wolpaw and E. W. Wolpaw, Eds., p. 300, Oxford University Press, 2012. View at Google Scholar
  43. W. Sittiprapaporn, “The design and interpretation of EEGs, FFTs, visual EPs, auditory EPs and auditory P300 ERPs studies with topographic brain mapping,” Journal of Engineering and Applied Sciences, vol. 7, no. 6, pp. 399–404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Veit, U. Strehl, T. Hinterberger, M. Erb, W. Grodd, and N. Birbaumer, “Self-regulation of slow cortical potentials: an event-related fMRI study,” NeuroImage, vol. 11, no. 5, article S32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Z. Allison, J. Jin, Y. Zhang, and X. Wang, “A four-choice hybrid P300/SSVEP BCI for improved accuracy,” Brain-Computer Interfaces, vol. 1, no. 1, pp. 17–26, 2014. View at Publisher · View at Google Scholar
  46. M. Wang, I. Daly, B. Z. Allison et al., “A new hybrid BCI paradigm based on P300 and SSVEP,” Journal of Neuroscience Methods, vol. 244, pp. 16–25, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Bi, K. Jie, X. Fan, and Y. Li, “A SSVEP Brain-computer Interface with the Hybrid Stimuli of SSVEP and P300,” in Proceedings of the ICME International Conference on Complex Medical Engineering (CME '13), pp. 211–214, Beijing, China, 2013. View at Publisher · View at Google Scholar
  48. L. W. Ko, S. C. Lin, M. S. Song et al., “Developing a few-channel hybrid BCI system by using motor imagery with SSVEP assist,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '14), IEEE, Beijing, China, 2014.
  49. G. N. Ranky and S. Adamovich, “Analysis of a commercial EEG device for the control of a robot arm,” in Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, pp. 1–2, IEEE, New York, NY, USA, 2010.
  50. D. A. Craig and H. T. Nguyen, “Adaptive EEG thought pattern classifier for advanced wheelchair control,” in Proceedings of the 32nd Annul International Conference of the IEEE Engineering in Medicine & Biology Society IEEE Engineering in Medicine & Biology Society, pp. 2544–2547, IEEE, Lyon, France, 2007.
  51. S. Bozinovski and A. Bozinovski, “Mental states, EEG manifestations, and mentally emulated digital circuits for brain-robot interaction,” IEEE Transactions on Autonomous Mental Development, vol. 7, no. 1, pp. 39–51, 2015. View at Publisher · View at Google Scholar · View at Scopus
  52. C. S. Crawford, M. Andujar, F. Jackson et al., “User experience evaluation towards cooperative brain-robot interaction,” in Proceedings of the International Conference on Human-Computer Interaction (HCI '15), pp. 184–193, Los Angeles, Calif, USA, 2015.
  53. F.-B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady-state visually evoked potentials: focus on essential paradigms and future perspectives,” Progress in Neurobiology, vol. 90, no. 4, pp. 418–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Basar, T. Demiralp, M. Schürmann, C. Basar-Eroglu, and A. Ademoglu, “Oscillatory brain dynamics, wavelet analysis, and cognition,” Brain and Language, vol. 66, no. 1, pp. 146–183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light,” Electroencephalography and Clinical Neurophysiology, vol. 20, no. 3, pp. 238–248, 1966. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Nakayama and M. Mackeben, “Steady state visual evoked potentials in the alert primate,” Vision Research, vol. 22, no. 10, pp. 1261–1271, 1982. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Rager and W. Singer, “The response of cat visual cortex to flicker stimuli of variable frequency,” European Journal of Neuroscience, vol. 10, no. 5, pp. 1856–1877, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, “A survey of stimulation methods used in SSVEP-based BCIs,” Computational Intelligence and Neuroscience, vol. 2010, Article ID 702357, 12 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6, pp. 510–523, 1988. View at Publisher · View at Google Scholar · View at Scopus
  60. M. S. Treder and B. Blankertz, “(C)overt attention and visual speller design in an ERP-based brain-computer interface,” Behavioral and Brain Functions, vol. 6, no. 4, article 28, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Acqualagna and B. Blankertz, “Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP),” Clinical Neurophysiology, vol. 124, no. 5, pp. 901–908, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Ding, G. Sperling, and R. Srinivasan, “Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency,” Cerebral Cortex, vol. 16, no. 7, pp. 1016–1029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. H. H. Jasper, “The ten twenty electrode system of the international federation,” Electroencephalography & Clinical Neurophysiology, vol. 10, pp. 371–375, 1958. View at Google Scholar
  64. C. S. Herrmann, “Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Experimental Brain Research, vol. 137, no. 3-4, pp. 346–353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Wu, Y. Lai, Y. Xia, D. Wu, and D. Yao, “Stimulator selection in SSVEP-based BCI,” Medical Engineering and Physics, vol. 30, no. 8, pp. 1079–1088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Bevilacqua, G. Tattoli, D. Buongiorno et al., “A novel BCI-SSVEP based approach for control of walking in Virtual Environment using a Convolutional Neural Network,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '14), pp. 4121–4128, July 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Ortner, B. Z. Allison, G. Korisek, H. Gaggl, and G. Pfurtscheller, “An SSVEP BCI to control a hand orthosis for persons with tetraplegia,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. J. I. D. S. Júnior, S. N. D. C. Leite, T. B. D. S. Costa et al., “Spectral vs. canonical correlation analysis for feature extraction in BCI-SSVEP systems,” in Proceedings of the Brain Congress, 2016.
  69. Y. Wang, Y.-T. Wang, and T.-P. Jung, “Visual stimulus design for high-rate SSVEP BCI,” Electronics Letters, vol. 46, no. 15, pp. 1057–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Zhang, G. X. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis,” International Journal of Neural Systems, vol. 24, no. 4, Article ID 1450013, pp. 1072–1092, 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Nan, M. W. Chi, B. Wang et al., “A comparison of minimum energy combination and canonical correlation analysis for SSVEP detection,” in Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering (NER '11), pp. 469–472, Cancun, Mexico, April 2011. View at Publisher · View at Google Scholar
  72. S. Pouryazdian and A. Erfanian, “Detection of steady-state visual evoked potentials for brain-computer interfaces using PCA and high-order statistics,” in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, vol. 25, no. 9, pp. 480–483, Munich, Germany, September 2009.
  73. A. Rakotomamonjy and V. Guigue, “BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1147–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. H. El Dabbagh and W. Fakhr, “Multiple classification algorithms for the BCI P300 speller diagram using ensemble of SVMs,” in Proceedings of the IEEE GCC Conference and Exhibition, pp. 393–396, February 2011.
  75. J. N. Mak, D. J. McFarland, T. M. Vaughan et al., “EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis,” Journal of Neural Engineering, vol. 9, no. 2, Article ID 026014, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Lugo, J. Rodriguez, A. Lechner et al., “A vibrotactile P300-based brain-computer interface for consciousness detection and communication,” Clinical EEG and Neuroscience, vol. 45, no. 1, pp. 14–21, 2014. View at Publisher · View at Google Scholar
  77. F. Lotte and C. Guan, “An efficient P300-based brain-computer interface with minimal calibration time,” in Proceedings of the Assistive Machine Learning for People with Disabilities Symposium (NIPS'09), Vancouver, Canada, 2009.
  78. M. Spüler, M. Bensch, S. Kleih, W. Rosenstiel, M. Bogdan, and A. Kübler, “Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI,” Clinical Neurophysiology, vol. 123, no. 7, pp. 1328–1337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Casagrande, J. Jarmolowska, M. Turconi et al., “PolyMorph: increasing P300 spelling efficiency by selection matrix polymorphism and sentence-based predictions,” Computer Science, 2015. View at Google Scholar
  80. C. S. Syan and R. E. S. Harnarinesingh, “Comparison of pre-processing and classification techniques for single-trial and multi-trial P300-based brain computer interfaces,” American Journal of Applied Sciences, vol. 7, no. 9, pp. 1219–1225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Park, D. Looney, N. Ur Rehman, A. Ahrabian, and D. P. Mandic, “Classification of motor imagery BCI using multivariate empirical mode decomposition,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 10–22, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Wang, K. S. Phua, K. A. Kai et al., “A feasibility study of non-invasive motor-imagery BCI-based robotic rehabilitation for stroke patients,” in Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering (NER '09), pp. 271–274, IEEE, Antalya, Turkey, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Devlaminck, B. Wyns, M. Grosse-Wentrup, G. Otte, and P. Santens, “Multisubject learning for common spatial patterns in motor-imagery BCI,” Computational Intelligence and Neuroscience, vol. 2011, Article ID 217987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. K. K. Ang, C. Guan, K. S. Phua et al., “Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation,” in Proceedings of the International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 4128–4131, August 2012.
  85. J. Li and L. Zhang, “Active training paradigm for motor imagery BCI,” Experimental Brain Research, vol. 219, no. 2, pp. 245–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Wu and Y. Ge, “A novel method for motor imagery EEG adaptive classification based biomimetic pattern recognition,” Neurocomputing, vol. 116, pp. 280–290, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Zhou, X. Wu, L. Zhang, Z. Lv, and X. Guo, “Robust spatial filters on three-class motor imagery EEG data using independent component analysis,” Journal of Biosciences and Medicines, vol. 2, no. 2, pp. 43–49, 2014. View at Publisher · View at Google Scholar
  88. N. Sharma and J.-C. Baron, “Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis,” Frontiers in Human Neuroscience, vol. 7, no. 2, article 564, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. S. K. Bashar, A. R. Hassan, and M. I. H. Bhuiyan, “Identification of motor imagery movements from EEG signals using Dual Tree Complex Wavelet Transform,” in Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI '15), pp. 290–296, Kochi, India, August 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Mouli, R. Palaniappan, I. P. Sillitoe, and J. Q. Gan, “Performance analysis of multi-frequency SSVEP-BCI using clear and frosted colour LED stimuli,” in Proceedings of the 13th IEEE International Conference on BioInformatics and BioEngineering (BIBE '13), pp. 1–4, IEEE, Chania, Greece, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. H.-J. Hwang, J.-H. Lim, Y.-J. Jung, H. Choi, S. W. Lee, and C.-H. Im, “Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard,” Journal of Neuroscience Methods, vol. 208, no. 1, pp. 59–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. V. P. Oikonomou, G. Liaros, K. Georgiadis et al., “Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs,” 2016.
  93. P. F. Diez, V. A. Mut, E. M. Avila Perona, and E. Laciar Leber, “Asynchronous BCI control using high-frequency SSVEP,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, article 39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. Z. Zhang, X. Li, and Z. Deng, “A CWT-based SSVEP classification method for brain-computer interface system,” in Proceedings of the International Conference on Intelligent Control and Information Processing (ICICIP '10), pp. 43–48, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Kumari and S. Somani, “Enhancing the Classification Accuracy of SSVEP based BCI using CWT method along with ANN,” International Journal of Advanced Research in Engineering & Management, vol. 1, pp. 81–89, 2015. View at Google Scholar
  96. M. Huang, P. Wu, Y. Liu et al., “Application and contrast in brain-computer interface between Hilbert-Huang transform and wavelet transform,” in Proceedings of the International Conference for Young Computer Scientists, pp. 1706–1710, IEEE Computer Society, 2008.
  97. X. G. Ruan, K. Xue, and M. Li, “Feature extraction of SSVEP-based brain-computer interface with ICA and HHT method,” in Proceedings of the 11th World Congress on Intelligent Control and Automation, pp. 2418–2423, IEEE, June-July 2014.
  98. F. Zhang, C. Han, L. Li, X. Zhang, J. Xie, and Y. Li, “Research on high-frequency combination coding-based SSVEP-BCIs and its signal processing algorithms,” Shock and Vibration, vol. 2015, Article ID 194230, 12 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  99. G. G. Molina, D. Zhu, and S. Abtahi, “Phase detection in a visual-evoked-potential based brain computer interface,” in Proceedings of the 18th European Signal Processing Conference (EUSIPCO '10), pp. 949–953, August 2010.
  100. D. Zhu, G. Garcia-Molina, V. Mihajlović, and R. M. Aarts, “Online BCI implementation of high-frequency phase modulated visual stimuli,” in Universal Access in Human-Computer Interaction. Users Diversity: 6th International Conference, UAHCI 2011, Held as Part of HCI International 2011, Orlando, FL, USA, July 9–14, 2011, Proceedings, Part II, vol. 6766 of Lecture Notes in Computer Science, pp. 645–654, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  101. Y. Wang, Z. Zhang, X. Gao, and S. Gao, “Lead selection for SSVEP-based brain-computer interface,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '04), pp. 4507–4510, September 2004. View at Scopus
  102. T. Demiralp, A. Ademoglu, M. Schürmann, C. Basar-Eroglu, and E. Basar, “Detection of P300 waves in single trials by the wavelet transform (WT),” Brain and Language, vol. 66, no. 1, pp. 108–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Vareka and P. Mautner, “Off-line analysis of the P300 event-related potential using discrete wavelet transform,” in Proceedings of the 36th International Conference on Telecommunications and Signal Processing (TSP '13), pp. 569–572, IEEE, July 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Guo, S. Lin, and Z. Huang, “Feature extraction of P300s in EEG signal with discrete wavelet transform and fisher criterion,” in Proceedings of the 8th International Conference on BioMedical Engineering and Informatics (BMEI '15), pp. 200–204, October 2015. View at Publisher · View at Google Scholar · View at Scopus
  105. W. Pan, S. Ji-Zhong, and S. J. He, “Research of P300 feature extraction algorithm based on wavelet transform and fisher distance,” International Journal of Education and Management Engineering, vol. 1, no. 6, pp. 47–50, 2011. View at Google Scholar
  106. M. Viqueira, B. G. Zapirain, and A. Mendez, “Wavelet transform for the analysis of EEG signals in patients with oral communications problems,” in Proceedings of the 11th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT '11), pp. 140–143, Bilbao, Spain, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Li, R. Sankar, Y. Arbel et al., “Single trial independent component analysis for P300 BCI system,” in Proceedings of the International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 4035–4038, IEEE, September 2009.
  108. A. Turnip, M. Siahaan, S. Suprijanto, and A. K. Waafi, “P300 detection using nonlinear independent component analysis,” in Proceedings of the 3rd International Conference on Instrumentation, Control and Automation (ICA '13), pp. 104–109, IEEE, August 2013. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Pires, U. Nunes, and M. Castelo-Branco, “P300 spatial filtering and coherence-based channel selection,” in Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering (NER '09), pp. 311–314, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. Z. Amini, V. Abootalebi, and M. T. Sadeghi, “Comparison of performance of different feature extraction methods in detection of P300,” Biocybernetics and Biomedical Engineering, vol. 33, no. 1, pp. 3–20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Hiroyasu, Y. Ohkubo, and U. Yamamoto, “Electroencephalographic method using fast Fourier transform overlap processing for recognition of right- or left-handed elbow flexion motor imagery,” in Proceedings of the IEEE Symposium on Computational Intelligence in Brain Computer Interfaces (CIBCI '14), pp. 24–29, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Jin, X.-Y. Wang, and X. Zhang, “Recognition of right and left motor imagery based on energy features,” Journal of East China University of Science and Technology, vol. 33, no. 4, pp. 536–540, 2007. View at Google Scholar · View at Scopus
  113. W.-Y. Hsu and Y.-N. Sun, “EEG-based motor imagery analysis using weighted wavelet transform features,” Journal of Neuroscience Methods, vol. 176, no. 2, pp. 310–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. B. Xu and A. Song, “Pattern recognition of motor imagery EEG using wavelet transform,” Journal of Biomedical Science and Engineering, vol. 1, no. 1, pp. 64–67, 2008. View at Publisher · View at Google Scholar
  115. L. Wang, G. Xu, J. Wang et al., “Application of Hilbert-Huang transform for the study of motor imagery tasks,” in Proceedings of the International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 3848–3851, 2008.
  116. A. B. Jerbic, P. Horki, S. Sovilj, V. Isgum, and M. Cifrek, “Hilbert-Huang time-frequency analysis of motor imagery EEG data for brain-computer interfaces,” in Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC '14), pp. 62–65, September 2014. View at Publisher · View at Google Scholar · View at Scopus
  117. Y.-H. Liu, C.-A. Cheng, and H.-P. Huang, “Novel feature of the EEG based motor imagery BCI system: degree of imagery,” in Proceedings of the International Conference on System Science and Engineering (ICSSE '11), pp. 515–520, IEEE, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, “Seperability of four-class motor imagery data using independent components analysis,” Journal of Neural Engineering, vol. 3, no. 3, pp. 208–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Guo and X. Wu, “Motor imagery EEG classification based on dynamic ICA mixing matrix,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4, IEEE, Chengdu, China, June 2010. View at Publisher · View at Google Scholar
  120. W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, “Stationary common spatial patterns for brain-computer interfacing,” Journal of Neural Engineering, vol. 9, no. 2, Article ID 026013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. W. He, P. Wei, L. Wang, and Y. Zou, “A novel EMD-based Common Spatial Pattern for motor imagery brain-computer interface,” in Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI '12), pp. 216–219, January 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b,” Frontiers in Neuroscience, vol. 6, article 39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. Z. Y. Chin, K. Ang, C. Wang et al., “Multi-class filter bank common spatial pattern for four-class motor imagery BCI,” in Proceedings of the IEEE Engineering in Medicine & Biology Society Conference, pp. 571–574, September 2009.
  124. K. A. Kai, Y. C. Zheng, H. Zhang et al., “Robust filter bank common spatial pattern (RFBCSP) in motor-imagery-based brain-computer interface,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC '09), vol. 2009, pp. 578–581, 2009. View at Publisher · View at Google Scholar
  125. Y. Chu, X. Zhao, J. Han, Y. Zhao, and J. Yao, “SSVEP based brain-computer interface controlled functional electrical stimulation system for upper extremity rehabilitation,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '14), pp. 2244–2249, IEEE, Bali, Indonesia, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Bi, Y. Li, K. Jie, and X.-A. Fan, “A new SSVEP brain-computer interface based on a head up display,” in Proceedings of the 7th ICME International Conference on Complex Medical Engineering (CME '13), pp. 201–204, May 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Maggi, S. Parini, L. Piccini, G. Panfili, and G. Andreoni, “A four command BCI system based on the SSVEP protocol,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 1264–1267, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Singla and B. A. Haseena, “BCI based wheelchair control using steady state visual evoked potentials and support Vector machines,” International Journal of Soft Computing & Engineering, vol. 3, no. 3, 2013. View at Google Scholar
  129. L. Bi, X.-A. Fan, K. Jie, T. Teng, H. Ding, and Y. Liu, “Using a head-up display-based steady-state visually evoked potential brain-computer interface to control a simulated vehicle,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 959–966, 2014. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Sakurada, T. Kawase, K. Takano, T. Komatsu, and K. Kansaku, “A BMI-based occupational therapy assist suit: asynchronous control by SSVEP,” Frontiers in Neuroscience, vol. 7, article 172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Cecotti and A. Gräser, “Time Delay Neural Network with Fourier transform for multiple channel detection of Steady-State Visual Evoked Potentials for Brain-Computer Interfaces,” in Proceedings of the 16th European Signal Processing Conference (EUSIPCO '08), pp. 1–5, August 2008. View at Scopus
  132. H. Cecotti, “A time-frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses,” Pattern Recognition Letters, vol. 32, no. 8, pp. 1145–1153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Hartmann and T. Kluge, “Hidden Markov Models for SSVEP-based brain computer interfaces with decision-feedback training,” Frontiers in Neuroinformatics, 2009. View at Publisher · View at Google Scholar
  134. L.-W. Ko, S.-C. Lin, W.-G. Liang, O. Komarov, and M.-S. Song, “Development of SSVEP-based BCI using common frequency pattern to enhance system performance,” in Proceedings of the IEEE Symposium on Computational Intelligence in Brain Computer Interfaces (CIBCI '14), pp. 30–35, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  135. I. Gareis, Y. Atum, G. Gentiletti et al., “On the use of LDA performance as a metric of feature extraction methods for a P300 BCI classification task,” Journal of Physics, vol. 332, no. 1, Article ID 012021, 2011. View at Publisher · View at Google Scholar
  136. A. Onishi and K. Natsume, “Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces,” PLoS ONE, vol. 9, no. 4, Article ID e93045, 2014. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Elwardy, T. Tasdizen, and M. Cetin, “Disjunctive normal unsupervised LDA for P300-based brain-computer interfaces,” in Proceedings of the 24th Signal Processing and Communication Application Conference (SIU '16), pp. 2261–2264, Zonguldak, Turkey, May 2016. View at Publisher · View at Google Scholar · View at Scopus
  138. V. N. Raju, I.-H. Ra, and R. Sankar, “A P300-based BCI classification algorithm using least square support vector machine,” International Journal of Software Engineering and Its Applications, vol. 9, no. 5, pp. 247–254, 2015. View at Publisher · View at Google Scholar · View at Scopus
  139. Y. Li, H. Li, C. Guan, and Z. Chin, “A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), pp. I385–I388, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. X. Yang, J. Dai, H. Zhang et al., “P300 wave based person identification using LVQ neural network,” Journal of Convergence Information Technology, vol. 6, no. 3, pp. 296–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Turnip, S. S. Hutagalung, J. Pardede et al., “P300 detection using a multilayer neural network classifier based on adaptive feature extraction,” International Journal of Brain & Cognitive Sciences, vol. 2, no. 5, pp. 63–75, 2013. View at Google Scholar
  142. H. Cecotti and A. Gräser, “Convolutional neural networks for P300 detection with application to brain-computer interfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 433–445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Helmy, T. Al-Ani, Y. Hamam, and E. El-madbouly, “P300 based brain-computer interface using Hidden Markov Models,” in Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 127–132, IEEE, Sydney, Australia, 2009.
  144. W. Speier, C. Arnold, J. Lu, A. Deshpande, and N. Pouratian, “Integrating language information with a hidden markov model to improve communication rate in the P300 speller,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 678–684, 2014. View at Publisher · View at Google Scholar · View at Scopus
  145. R. K. Chikara and L.-W. Ko, “Classification of EEG-P300 signals using phase locking value and pattern recognition classifiers,” in Proceedings of the Conference on Technologies and Applications of Artificial Intelligence (TAAI '15), pp. 367–372, IEEE, Tainan, Taiwan, November 2015. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Steyrl, R. Scherer, O. Förstner et al., “Motor imagery brain-computer interfaces: random forests vs regularized LDA -non-linear beats linear,” in Proceedings of the 6th International Brain-Computer Interface Conference, Graz, Austria, September 2014.
  147. C. Vidaurre, A. Schlögl, R. Cabeza, R. Scherer, and G. Pfurtscheller, “Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 3, article no. 28, pp. 550–556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. N. Rathipriya, S. Deepajothi, and T. Rajendran, “Classification of motor imagery ecog signals using support vector machine for brain computer interface,” in Proceedings of the 5th International Conference on Advanced Computing (ICoAC '13), pp. 63–66, December 2013. View at Publisher · View at Google Scholar · View at Scopus
  149. M. A. Oskoei, J. Q. Gan, and H. Hu, “Adaptive schemes applied to online SVM for BCI data classification,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC '09), pp. 2600–2603, Minneapolis, Minn, USA, 2009. View at Publisher · View at Google Scholar
  150. S. Siuly and Y. Li, “Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 4, pp. 526–538, 2012. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Hamedi, S.-H. Salleh, A. M. Noor, and I. Mohammad-Rezazadeh, “Neural network-based three-class motor imagery classification using time-domain features for BCI applications,” in Proceedings of the IEEE Region 10 Symposium (IEEE TENSYMP '14), pp. 204–207, April 2014. View at Scopus
  152. Y. Wei, Y. Zhou, J. Ma et al., “Signal feature extraction and classification method based on EMD and LVQ neural network,” Journal of Data Acquisition & Processing, no. 5, pp. 683–687, 2014. View at Google Scholar
  153. M. K. Hazrati and A. Erfanian, “An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network,” Medical Engineering and Physics, vol. 32, no. 7, pp. 730–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. E. Haselsteiner and G. Pfurtscheller, “Using time-dependent neural networks for EEG classification,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 457–463, 2000. View at Publisher · View at Google Scholar · View at Scopus
  155. Siuly, H. Wang, and Y. Zhang, “Detection of motor imagery EEG signals employing Naïve Bayes based learning process,” Measurement, vol. 86, pp. 148–158, 2016. View at Publisher · View at Google Scholar · View at Scopus
  156. B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller, “Hidden Markov models for online classification of single trial EEG data,” Pattern Recognition Letters, vol. 22, no. 12, pp. 1299–1309, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  157. H.-I. Suk and S.-W. Lee, “Two-layer hidden Markov models for multi-class motor imagery classification,” in Proceedings of the Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (WBD '10), pp. 5–8, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. S. K. Bashar and M. I. H. Bhuiyan, “Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method,” Engineering Science & Technology, vol. 19, no. 3, pp. 1457–1464, 2016. View at Google Scholar
  159. O. Diana Eva and D. Tarniceriu, “Substitution of spatial filters from relaxation to motor imagery for EEG based brain computer interface,” in Proceedings of the 19th International Conference on System Theory, Control and Computing (ICSTCC '15), pp. 147–150, October 2015. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Zhao, Q. Meng, W. Li, M. Li, and G. Chen, “SSVEP-based hierarchical architecture for control of a humanoid robot with mind,” in Proceedings of the 11th World Congress on Intelligent Control and Automation (WCICA '14), pp. 2401–2406, July 2014. View at Publisher · View at Google Scholar · View at Scopus
  161. X.-Y. Wang, F. Cai, J. Jin, Y. Zhang, and B. Wang, “Robot control system based on auditory brain-computer interface,” Control Theory & Applications, vol. 32, no. 9, pp. 1183–1190, 2015. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Li, W. Li, J. Zhao et al., “A P300 model for Cerebot—a mind-controlled humanoid robot,” in Robot Intelligence Technology and Applications 2, pp. 495–502, Springer, 2014. View at Google Scholar
  163. J. Tang, J. Jiang, Y. Yu, and Z. Zhou, “Humanoid robot operation by a brain-computer interface,” in Proceedings of the 7th International Conference on Information Technology in Medicine and Education (ITME '15), pp. 476–479, November 2015. View at Publisher · View at Google Scholar · View at Scopus
  164. J.-C. Liu, H.-C. Chou, C.-H. Chen, Y.-T. Lin, and C.-H. Kuo, “Time-shift correlation algorithm for P300 event related potential brain-computer interface implementation,” Computational Intelligence and Neuroscience, vol. 2016, Article ID 3039454, 22 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  165. K. Bouyarmane, J. Vaillant, N. Sugimoto et al., “BCI control of whole-body simulated humanoid by combining motor imagery detection and autonomous motion planning,” in Neural Information Processing, pp. 310–318, Springer, Berlin, Germany, 2013. View at Google Scholar
  166. A. M. Batula, J. Mark, Y. E. Kim et al., “Developing an optical brain-computer interface for humanoid robot control,” in Proceedings of the 10th International Conference on Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, July 2016.
  167. O. Cohen, S. Druon, S. Lengagne et al., “fMRI-Based robotic embodiment: controlling a humanoid robot by thought using real-time fMRI,” Presence: Teleoperators and Virtual Environments, vol. 23, no. 3, pp. 229–241, 2014. View at Publisher · View at Google Scholar · View at Scopus
  168. Z. Deng, X. Li, K. Zheng, and W. Yao, “A humanoid robot control system with SSVEP-based asynchronous brain-computer interface,” Jiqiren/Robot, vol. 33, no. 2, pp. 129–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Jiang, A. Wang, Y. Ge, and Z. Zhou, “Brain-actuated humanoid robot control using one class motor imagery task,” in Proceedings of the Chinese Automation Congress (CAC '13), pp. 587–590, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  170. J. Jiang, Z. Zhou, E. Yin, Y. Yu, Y. Liu, and D. Hu, “A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design,” Computers in Biology and Medicine, vol. 66, pp. 11–19, 2015. View at Publisher · View at Google Scholar · View at Scopus
  171. B. Choi and S. Jo, “A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition,” PLoS ONE, vol. 8, no. 9, Article ID e74583, 2013. View at Publisher · View at Google Scholar · View at Scopus
  172. L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  173. G. Bin, X. Gao, Y. Wang, B. Hong, and S. Gao, “VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier],” IEEE Computational Intelligence Magazine, vol. 4, no. 4, pp. 22–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. S. A. Hillyard and T. W. Picton, “Electrophysiology of cognition,” in Handbook of Physiology. The Nervous System, Higher Functions of the Brain, F. Plum, Ed., 2010. View at Google Scholar
  175. R. W. McCarley, S. F. Faux, M. E. Shenton, P. G. Nestor, and J. Adams, “Event-related potentials in schizophrenia: their biological and clinical correlates and new model of schizophrenic pathophysiology,” Schizophrenia Research, vol. 4, no. 2, pp. 209–231, 1991. View at Publisher · View at Google Scholar · View at Scopus
  176. E. Snyder and S. A. Hillyard, “Long-latency evoked potentials to irrelevant, deviant stimuli,” Behavioral Biology, vol. 16, no. 3, pp. 319–331, 1976. View at Publisher · View at Google Scholar · View at Scopus
  177. D. Karis, T. Bashore, M. Coles et al., “Cognitive psychophysiology and human information processing,” in Psychophysiology: Systems, Processes, and Applications, Guilford Press, New York, NY, USA, 1986. View at Google Scholar
  178. R. Verleger, “Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3,” Behavioral and Brain Sciences, vol. 11, no. 3, pp. 343–356, 1988. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked-potential correlates of stimulus uncertainty,” Science, vol. 150, no. 3700, pp. 1187–1188, 1965. View at Publisher · View at Google Scholar · View at Scopus
  180. D. B. D. Smith, E. Donchin, L. Cohen, and A. Starr, “Auditory averaged evoked potentials in man during selective binaural listening,” Electroencephalography and Clinical Neurophysiology, vol. 28, no. 2, pp. 146–152, 1970. View at Publisher · View at Google Scholar · View at Scopus
  181. J. Jin, B. Z. Allison, T. Kaufmann et al., “The changing face of P300 BCIs: a comparison of stimulus changes in a p300 bci involving faces, emotion, and movement,” PLoS ONE, vol. 7, no. 11, Article ID e49688, 2012. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Ergen, S. Marbach, A. Brand, C. Başar-Eroğlu, and T. Demiralp, “P3 and delta band responses in visual oddball paradigm in schizophrenia,” Neuroscience Letters, vol. 440, no. 3, pp. 304–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. J. Jin, I. Daly, Y. Zhang, X. Wang, and A. Cichocki, “An optimized ERP brain-computer interface based on facial expression changes,” Journal of Neural Engineering, vol. 11, no. 3, Article ID 036004, 2014. View at Publisher · View at Google Scholar · View at Scopus
  184. J. Jin, B. Z. Allison, Y. Zhang, X. Wang, and A. Cichocki, “An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions,” International Journal of Neural Systems, vol. 24, no. 8, Article ID 1450027, 2014. View at Publisher · View at Google Scholar · View at Scopus
  185. J. Jin, E. W. Sellers, S. Zhou, Y. Zhang, X. Wang, and A. Cichocki, “A P300 brain-computer interface based on a modification of the mismatch negativity paradigm,” International Journal of Neural Systems, vol. 25, no. 3, Article ID 1550011, 2015. View at Publisher · View at Google Scholar · View at Scopus
  186. K. Fukunaga, “Statistical pattern recognition,” Mathematics in Science and Engineering, vol. 66, no. 12-1, pp. 35–79, 1970. View at Google Scholar
  187. K. P. Bennett and C. Campbell, “Support vector machines: hype or hallelujah?” ACM SIGKDD Explorations Newsletter, vol. 2, no. 2, pp. 1–13, 2000. View at Google Scholar
  188. M. Jeannerod, “Mental imagery in the motor context,” Neuropsychologia, vol. 33, no. 11, pp. 1419–1432, 1995. View at Publisher · View at Google Scholar · View at Scopus
  189. G. Pfurtscheller and C. Neuper, “Motor imagery activates primary sensorimotor area in humans,” Neuroscience Letters, vol. 239, no. 2-3, pp. 65–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  190. L. Leocani, C. Toro, P. Manganotti, P. Zhuang, and M. Hallett, “Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self- paced movements,” Electroencephalography and Clinical Neurophysiology, vol. 104, no. 3, pp. 199–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  191. G. E. Chatrian, M. C. Petersen, and J. A. Lazarte, “The blocking of the rolandic wicket rhythm and some central changes related to movement,” Electroencephalography and Clinical Neurophysiology, vol. 11, no. 3, pp. 497–510, 1959. View at Publisher · View at Google Scholar · View at Scopus
  192. H. Gastaut, “Electrocorticographic study of the reactivity of rolandic rhythm,” Revue Neurologique, vol. 87, no. 2, pp. 176–182, 1952. View at Google Scholar · View at Scopus
  193. H. Jasper, “Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus,” European Archives of Psychiatry & Clinical Neuroscience, vol. 183, no. 1, pp. 163–174, 1948. View at Google Scholar
  194. G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp EEG,” Electroencephalography and Clinical Neurophysiology, vol. 42, no. 6, pp. 817–826, 1977. View at Publisher · View at Google Scholar · View at Scopus
  195. F. Cassim, C. Monaca, W. Szurhaj et al., “Does post-movement beta synchronization reflect an idling motor cortex?” NeuroReport, vol. 12, no. 17, pp. 3859–3863, 2001. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Toro, G. Deuschl, R. Thatcher, S. Sato, C. Kufta, and M. Hallett, “Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG,” Electroencephalography and Clinical Neurophysiology, vol. 93, no. 5, pp. 380–389, 1994. View at Publisher · View at Google Scholar · View at Scopus
  197. C. Neuper, A. Schlögl, and G. Pfurtscheller, “Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery,” Journal of Clinical Neurophysiology, vol. 16, no. 4, pp. 373–382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  198. T. Yu, J. Xiao, F. Wang et al., “Enhanced motor imagery training using a hybrid BCI with feedback,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 7, pp. 1706–1717, 2015. View at Publisher · View at Google Scholar · View at Scopus
  199. V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, “Wavelet analysis of neuroelectric waveforms: a conceptual tutorial,” Brain and Language, vol. 66, no. 1, pp. 7–60, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. N. E. Huang, H. H. Liu, N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London A: Mathematical, Physical & Engineering Sciences, vol. 454, no. 1971, pp. 903–995, 1998. View at Google Scholar
  201. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 123–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  202. N. E. Huang, S. R. Long, and Z. Shen, “The mechanism for frequency downshift in nonlinear wave evolution,” Advances in Applied Mechanics, vol. 32, no. 8, pp. 59–117, 1996. View at Google Scholar
  203. P.-L. Lee, H.-C. Chang, T.-Y. Hsieh, H.-T. Deng, and C.-W. Sun, “A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach,” IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans, vol. 42, no. 5, pp. 1053–1064, 2012. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  205. C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI),” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 447–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  206. R. Ortner, J. Scharinger, A. Lechner, and C. Guger, “How many people can control a motor imagery based BCI using common spatial patterns?” in Proceedings of the 7th International IEEE/EMBS Conference on Neural Engineering (NER '15), pp. 202–205, April 2015. View at Publisher · View at Google Scholar · View at Scopus
  207. X. Lei, P. Yang, P. Xu et al., “Common spatial pattern ensemble classifier and its application in brain-computer interface,” Journal of Electronic Science & Technology of China, vol. 7, no. 1, pp. 17–21, 2009. View at Google Scholar
  208. X. Yong, R. K. Ward, and E. G. Birch, “Robust common spatial patterns for EEG signal preprocessing,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 2087–2090, Vancouver, Canada, August 2008. View at Publisher · View at Google Scholar
  209. K.-R. Müller, C. W. Anderson, and G. E. Birch, “Linear and nonlinear methods for brain-computer interfaces,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 165–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  210. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-computer interfaces,” Journal of Neural Engineering, vol. 4, no. 2, pp. R1–R13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, En Broeck the Statistical Mechanics of Learning Rsity, John Wiley & Sons, 2nd edition, 2000.
  212. G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Computation, vol. 12, no. 10, pp. 2385–2404, 2000. View at Publisher · View at Google Scholar · View at Scopus
  213. W. S. Noble, “What is a support vector machine?” Nature Biotechnology, vol. 24, no. 12, pp. 1565–1567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  214. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining & Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Google Scholar
  215. I. Rish, “An empirical study of the naive Bayes classifier,” Journal of Universal Computer Science, vol. 1, no. 2, p. 127, 2001. View at Google Scholar
  216. R. Boostani and M. H. Moradi, “A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier,” Journal of Neural Engineering, vol. 1, no. 4, pp. 212–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  217. J. Qin, Y. Li, and A. Cichocki, “ICA and committee machine-based algorithm for cursor control in a BCI system,” in Advances in Neural Networks—ISNN 2005, pp. 973–978, Springer, 2005, 2005. View at Google Scholar
  218. H. Lee and S. Choi, “PCA+HMM+SVM for EEG pattern classification,” in Proceedings of the 7th International Symposium on Signal Processing and Its Applications (ISSPA '03), pp. 541–544, July 2003. View at Publisher · View at Google Scholar · View at Scopus
  219. F. Galán, M. Nuttin, E. Lew et al., “A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, no. 9, pp. 2159–2169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  220. I. Iturrate, J. M. Antelis, A. Kübler, and J. Minguez, “A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation,” IEEE Transactions on Robotics, vol. 25, no. 3, pp. 614–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. B. Rebsamen, C. Guan, H. Zhang et al., “A brain controlled wheelchair to navigate in familiar environments,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 6, pp. 590–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. J. Philips, J. D. R. Millán, G. Vanacker et al., “Adaptive shared control of a brain-actuated simulated wheelchair,” in Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics (ICORR '07), pp. 408–414, Noordwijk, Netherlands, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  223. G. Vanacker, R. Del M J, E. Lew et al., “Context-based filtering for assisted brain-actuated wheelchair driving,” Computational Intelligence & Neuroscience, vol. 2007, article 3, 2007. View at Google Scholar
  224. Y. Li, J. Pan, F. Wang, and Z. Yu, “A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 11, pp. 3156–3166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  225. M. Palankar, K. J. De Laurentis, R. Alqasemi et al., “Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: initial experiments,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '08), pp. 348–353, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. T. Li, J. Hong, J. Zhang et al., “Brain-machine interface control of a manipulator using small-world neural network and shared control strategy,” Journal of Neuroscience Methods, vol. 224, no. 6, pp. 26–38, 2014. View at Google Scholar
  227. E. Iáñez, M. C. Furió, J. Azorín M et al., “Brain-robot interface for controlling a remote robot arm,” in Bioinspired Applications in Artificial and Natural Computation, pp. 353–361, Springer, Berlin, Germany, 2009. View at Google Scholar
  228. E. A. Pohlmeyer, B. Mahmoudi, S. Geng, N. Prins, and J. C. Sanchez, “Brain-machine interface control of a robot arm using actor-critic rainforcement learning,” in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '12), pp. 4108–4111, September 2012. View at Publisher · View at Google Scholar · View at Scopus
  229. C. Wang, B. Xia, J. Li et al., “Motor imagery BCI-based robot arm system,” in Proceedings of the 7th International Conference on Natural Computation (ICNC '11), pp. 181–184, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  230. D. Elstob and E. L. Secco, “A low cost eeg based BCI prosthetic using motor imagery,” International Journal of Information Technology Convergence and Services, vol. 6, no. 1, pp. 23–36, 2016. View at Publisher · View at Google Scholar
  231. Y. Chen, S. Chen, I. Zaeni, and C. Wu, “Fuzzy tracking and control algorithm for an SSVEP-based BCI system,” Applied Sciences, vol. 6, no. 10, article 270, 2016. View at Publisher · View at Google Scholar
  232. N. Kos'Myna, F. Tarpin-Bernard, and B. Rivet, “Bidirectional feedback in motor imagery BCIs: learn to control a drone within 5 minutes,” in Proceedings of the Conference on Human Factors in Computing Systems is the Premier International Conference of Human-Computer Interaction (CHI '14), pp. 479–482, Toronto, Canada, May 2014.
  233. A. J. Doud, J. P. Lucas, and B. He, “Continuous 3D control of a virtual helicopter using a motor imagery based BCI,” in Proceedings of the International IEEE/EMBS Conference on Neural Engineering, pp. 364–367, April-May 2011.
  234. K. Lafleur, K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He, “Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface,” Journal of Neural Engineering, vol. 10, no. 4, pp. 711–726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  235. C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. N. Rao, “Control of a humanoid robot by a noninvasive brain-computer interface in humans,” Journal of Neural Engineering, vol. 5, no. 2, pp. 214–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  236. W. Li, C. Jaramillo, and Y. Li, “A brain computer interface based humanoid robot control system,” in Proceedings of the 2nd IASTED International Conference on Robotics (Robo '11), pp. 390–396, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  237. W. Li, C. Jaramillo, and Y. Li, “Development of mind control system for humanoid robot through a brain computer interface,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application, pp. 679–682, IEEE Computer Society, 2012.
  238. J. D. R. Millán and J. Mouriño, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 159–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  239. T. Liu, L. Goldberg, S. Gao, and B. Hong, “An online brain-computer interface using non-flashing visual evoked potentials,” Journal of Neural Engineering, vol. 7, no. 3, Article ID 036003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. J. Jin, B. Z. Allison, E. W. Sellers et al., “An adaptive P300-based control system,” Journal of Neural Engineering, vol. 8, no. 3, Article ID 036006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  241. D. J. Leamy, R. Collins, and T. E. Ward, “Combining fNIRS and EEG to improve motor cortex activity classification during an imagined movement-based task,” in Proceedings of the International Conference on Foundations of Augmented Cognition: Directing the Future of Adaptive Systems, pp. 177–185, Springer, 2011.
  242. F. Putze, S. Hesslinger, C.-Y. Tse et al., “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Frontiers in Neuroscience, vol. 8, article 373, 2014. View at Publisher · View at Google Scholar · View at Scopus
  243. C. Mulert, L. Jäger, R. Schmitt et al., “Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection,” NeuroImage, vol. 22, no. 1, pp. 83–94, 2004. View at Publisher · View at Google Scholar · View at Scopus