Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2017, Article ID 3295769, 16 pages
https://doi.org/10.1155/2017/3295769
Research Article

Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

1School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
3School of Internet of Things, Nanjing University of Posts and Telecommunication, Nanjing 210003, China

Correspondence should be addressed to Linguo Li; moc.361@2121-gll

Received 1 July 2016; Revised 21 November 2016; Accepted 6 December 2016; Published 3 January 2017

Academic Editor: Cheng-Jian Lin

Copyright © 2017 Linguo Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, Cengage Learning, 2014.
  2. S. Masood, M. Sharif, A. Masood, M. Yasmin, and M. Raza, “A survey on medical image segmentation,” Current Medical Imaging Reviews, vol. 11, no. 1, pp. 3–14, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Ghamisi, M. S. Couceiro, F. M. L. Martins, and J. A. Benediktsson, “Multilevel image segmentation based on fractional-order darwinian particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2382–2394, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Waseem Khan, “A survey: image segmentation techniques,” International Journal of Future Computer and Communication, vol. 3, no. 2, pp. 89–93, 2014. View at Publisher · View at Google Scholar
  5. J. Li, X. Li, B. Yang, and X. Sun, “Segmentation-based image copy-move forgery detection scheme,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 3, pp. 507–518, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Pan, J. Lei, Y. Zhang, X. Sun, and S. Kwong, “Fast motion estimation based on content property for low-complexity H.265/HEVC encoder,” IEEE Transactions on Broadcasting, vol. 62, no. 3, pp. 675–684, 2016. View at Publisher · View at Google Scholar
  7. X. Chen, S. Feng, and D. Pan, “An improved approach of lung image segmentation based on watershed algorithm,” in Proceedings of the the 7th International Conference on Internet Multimedia Computing and Service, pp. 1–5, Zhangjiajie, China, August 2015. View at Publisher · View at Google Scholar
  8. Y. Zheng, B. Jeon, D. Xu, Q. M. J. Wu, and H. Zhang, “Image segmentation by generalized hierarchical fuzzy C-means algorithm,” Journal of Intelligent and Fuzzy Systems, vol. 28, no. 2, pp. 961–973, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Osuna-Enciso, E. Cuevas, and H. Sossa, “A comparison of nature inspired algorithms for multi-threshold image segmentation,” Expert Systems with Applications, vol. 40, no. 4, pp. 1213–1219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kurban, P. Civicioglu, R. Kurban, and E. Besdok, “Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding,” Applied Soft Computing Journal, vol. 23, pp. 128–143, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 273–285, 1985. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica, vol. 11, no. 285–296, pp. 23–27, 1975. View at Google Scholar
  13. X. Li, Z. Zhao, and H. D. Cheng, “Fuzzy entropy threshold approach to breast cancer detection,” Information Sciences - Applications, vol. 4, no. 1, pp. 49–56, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern Recognition, vol. 19, no. 1, pp. 41–47, 1986. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Xue, S. Zhong, T. Ma, and J. Cao, “A hybrid evolutionary algorithm for numerical optimization problem,” Intelligent Automation & Soft Computing, vol. 21, no. 4, pp. 473–490, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. P.-Y. Yin, “A fast scheme for optimal thresholding using genetic algorithms,” Signal Processing, vol. 72, no. 2, pp. 85–95, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. W. Fujun, L. Junlan, L. Shiwei, Z. Xingyu, Z. Dawei, and T. Yanling, “An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 916–923, 2014. View at Publisher · View at Google Scholar
  18. S. Banerjee and N. D. Jana, “Bi level kapurs entropy based image segmentation using particle swarm optimization,” in Proceedings of the 3rd International Conference on Computer, Communication, Control and Information Technology (C3IT '15), pp. 1–4, Hooghly, India, February 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. M.-H. Horng, “Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation,” Expert Systems with Applications, vol. 38, no. 11, pp. 13785–13791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, and V. Osuna, “A multilevel thresholding algorithm using electromagnetism optimization,” Neurocomputing, vol. 139, pp. 357–381, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sarkar, G. R. Patra, and S. Das, “A differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding,” in Swarm, Evolutionary, and Memetic Computing, pp. 51–58, Springer, Berlin, Germany, 2011. View at Google Scholar
  22. Y. Xue, Y. Zhuang, T. Ni, S. Ni, and X. Wen, “Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem,” Journal of Systems Engineering and Electronics, vol. 25, no. 1, pp. 59–68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Agrawal, R. Panda, S. Bhuyan, and B. K. Panigrahi, “Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm,” Swarm and Evolutionary Computation, vol. 11, pp. 16–30, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. P. D. Sathya and R. Kayalvizhi, “Optimal multilevel thresholding using bacterial foraging algorithm,” Expert Systems with Applications, vol. 38, no. 12, pp. 15549–15564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ayas, H. Dogan, E. Gedikli, and M. Ekinci, “Microscopic image segmentation based on firefly algorithm for detection of tuberculosis bacteria,” in Proceedings of the 23rd Signal Processing and Communications Applications Conference (SIU '15), pp. 851–854, Malatya, Turkey, May 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Akay, “A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding,” Applied Soft Computing, vol. 13, no. 6, pp. 3066–3091, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Bhandari, A. Kumar, and G. K. Singh, “Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions,” Expert Systems with Applications, vol. 42, no. 3, pp. 1573–1601, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. M. F. Ferreira, “An efficient method for segmentation of images based on fractional calculus and natural selection,” Expert Systems with Applications, vol. 39, no. 16, pp. 12407–12417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Li, L. Sun, W. Kang, J. Guo, C. Han, and S. Li, “Fuzzy multilevel image thresholding based on modified discrete grey wolf optimizer and local information aggregation,” IEEE Access, vol. 4, pp. 6438–6450, 2016. View at Publisher · View at Google Scholar
  31. H.-S. Wu, F.-M. Zhang, and L.-S. Wu, “New swarm intelligence algorithm-wolf pack algorithm,” Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, vol. 35, no. 11, pp. 2430–2438, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wu and F. Zhang, “A uncultivated wolf pack algorithm for high-dimensional functions and its application in parameters optimization of PID controller,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '14), pp. 1477–1482, Beijing, China, July 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. H.-S. Wu and F.-M. Zhang, “Wolf pack algorithm for unconstrained global optimization,” Mathematical Problems in Engineering, vol. 2014, Article ID 465082, 17 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Zhou and Y. Zhou, “Wolf colony search algorithm based on leader strategy,” Application Research of Computers, vol. 9, pp. 2629–2632, 2013. View at Google Scholar
  35. G. M. Komaki and V. Kayvanfar, “Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time,” Journal of Computational Science, vol. 8, pp. 109–120, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. L. I. Wong, M. H. Sulaiman, M. R. Mohamed, and M. S. Hong, “Grey Wolf Optimizer for solving economic dispatch problems,” in Proceedings of the IEEE International Conference on Power and Energy (PECon '14), pp. 150–154, Kuching, Malaysia, December 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Chaman-Motlagh, “Superdefect photonic crystal filter optimization using Grey Wolf Optimizer,” IEEE Photonics Technology Letters, vol. 27, no. 22, pp. 2355–2358, 2015. View at Publisher · View at Google Scholar
  38. P. Q. Dzung, N. T. Tien, N. Dinh Tuyen, and H. Lee, “Selective harmonic elimination for cascaded multilevel inverters using grey wolf optimizer algorithm,” in Proceedings of the 9th International Conference on Power Electronics and ECCE Asia (ICPE '15-ECCE Asia), June 2015. View at Publisher · View at Google Scholar
  39. N. Muangkote, K. Sunat, and S. Chiewchanwattana, “An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets,” in Proceedings of the International Computer Science and Engineering Conference (ICSEC '14), pp. 209–214, Khon Kaen, Thailand, August 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Zhu, C. Xu, Z. Li, J. Wu, and Z. Liu, “Hybridizing grey Wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC,” Journal of Systems Engineering and Electronics, vol. 26, no. 2, pp. 317–328, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011. View at Publisher · View at Google Scholar · View at Scopus