Review Article

Emergence of Deep Learning in Knee Osteoarthritis Diagnosis

Table 4

Summary of 2DCNN classification approaches on progression of osteoarthritis diagnosis.

Publication referenceTarget tasksModality (imaging sequence)Data setNetwork architecturePerformance

Guan et al. [53]Predict OA progressionX-ray (plain radiography)OAI: 600 subjects (450 training, 50 validation, 100 testing)Vgg16 and DenseNetVgg16: AUC: 0.717; SN: 80.0%; SP: 56.1%
DenseNet: AUC: 0.744; SN: 94.1%; SP: 48.0%

Tiulpin et al. [54]Predict OA progressionX-ray (plain radiography)OAI: 5139 images (training)CNNAUC: 0.71
MOST: 2,491 images (testing)

Guan et al. [11]Predicting progression of radiographic medial joint space lossX-ray (plain radiography)OAI: (1400 training, 150 validation, 400 testing) imagesYOLO + DenseNetAUC: 0.799; SN: 78.0%; SP: 75.5%
Razmjoo et al. [7]Predict OA incidenceMRIOAI: 1805 subjectsTopological data analysis (TDA) + graph convolutional network (GCN model)Accuracy (F1): 0.91; SN: 0.84; SP: 0.99
Li et al. [55]Predict OA progression by assessing severityX-ray (plain radiography)MOST: 3021 subjects (training : validation : testing; 80 : 10 : 10%)Siamese neural networkAUC: 0.90

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), and area under receiver operating characteristics curve (AUC).