Canadian Journal of Gastroenterology and Hepatology

Canadian Journal of Gastroenterology and Hepatology / 2010 / Article

Original Article | Open Access

Volume 24 |Article ID 649312 |

Andrew Szilagyi, Ian Shrier, Debra Heilpern, Jung Sung Je, Sunghoon Park, George Chong, Catherine Lalonde, Louis-Francois Cote, Byong Lee, "Differential Impact of Lactose/Lactase Phenotype on Colonic Microflora", Canadian Journal of Gastroenterology and Hepatology, vol. 24, Article ID 649312, 7 pages, 2010.

Differential Impact of Lactose/Lactase Phenotype on Colonic Microflora

Received02 Oct 2009
Accepted03 Nov 2009


BACKGROUND: The ability to digest lactose divides the world’s population into two phenotypes that may be risk variability markers for several diseases. Prebiotic effects likely favour lactose maldigesters who experience lactose spilling into their colon.OBJECTIVE: To evaluate the effects of fixed-dose lactose solutions on fecal bifidobacteria and lactobacilli in digesters and maldigesters, and to determine whether the concept of a difference in ability to digest lactose is supported.METHODS: A four-week study was performed in 23 lactose mal-digesters and 18 digesters. Following two weeks of dairy food withdrawal, subjects ingested 25 g of lactose twice a day for two weeks. Stool bifidobacteria and lactobacilli counts pre- and postintervention were measured as the primary outcome. For secondary outcomes, total anaerobes, Enterobacteriaceae, beta-galactosidase and N-acetyl-beta-D-glucosaminidase activity in stool, as well as breath hydrogen and symptoms following lactose challenge tests, were measured.RESULTS: Lactose maldigesters had a mean change difference (0.72 log10 colony forming units/g stool; P=0.04) in bifidobacteria counts compared with lactose digesters. Lactobacilli counts were increased, but not significantly. Nevertheless, reduced breath hydrogen after lactose ingestion correlated with lactobacilli (r=−0.5; P<0.001). Reduced total breath hydrogen and symptom scores together, with a rise in fecal enzymes after intervention, were appropriate, but not significant.CONCLUSIONS: Despite failure to achieve full colonic adaptation, the present study provided evidence for a differential impact of lactose on microflora depending on genetic lactase status. A prebiotic effect was evident in lactose maldigesters but not in lactose digesters. This may play a role in modifying the mechanisms of certain disease risks related to dairy food consumption between the two phenotypes.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

No related content is available yet for this article.

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.