Contrast Media & Molecular Imaging
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate58%
Submission to final decision65 days
Acceptance to publication40 days
CiteScore3.200
Impact Factor1.984

Diagnostic Performance of 18F-FDG PET(CT) in Bone-Bone Marrow Involvement in Pediatric Neuroblastoma: A Systemic Review and Meta-Analysis

Read the full article

 Journal profile

Contrast Media & Molecular Imaging is an exciting journal in the area of contrast agents and molecular imaging, covering all areas of imaging technologies with a special emphasis on MRI and PET.

 Editor spotlight

Chief Editor, Professor Zimmer, focuses on the development and use of PET radiotracers for new applications of PET/MRI imaging in neuroscience and pharmacology.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Nanoradiomics Approach for Differentiation of Tumors Based on Tumor-Associated Macrophage Burden

Objective. Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an important role in treatment resistance and disease recurrence. The purpose of this study was to investigate if nanoradiomics (radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden. Materials and Methods. In vivo studies were performed in transgenic mouse models of neuroblastoma with low (N = 11) and high (N = 10) tumor-associated macrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs). RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using the Kruskal–Wallis test. Results. N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences () in tumor volume between low and high TAM tumors. Tumor CT attenuation was not significantly different () between low and high TAM tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated () low TAM and high TAM tumors. The RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold cross-validation. Conclusions. Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.

Research Article

Prediction of Remnant Liver Regeneration after Right Hepatectomy in Patients with Hepatocellular Carcinoma Using Preoperative CT Texture Analysis and Clinical Features

Objectives. To predict the regenerative rate of liver in patients with HCCs after right hepatectomy using texture analysis on preoperative CT combined with clinical features. Materials and Methods. 88 patients with 90 HCCs who underwent right hepatectomy were retrospectively included. The future remnant liver was semiautomatically segmented, and the volume of future remnant liver on preoperative CT (LVpre) and the volume of remnant liver on following-up CT (LVfu) were measured. We calculated the regeneration index (RI) by the following equation: (LVfu – LVpre)/LVpre) × 100 (%). The support vector machine recursive method was used for the feature selection. The Naive Bayes classifier was used to predict liver RI, and 5-fold cross-validation was performed to adjust the parameters. Sensitivity, specificity, and accuracy were calculated to evaluate the diagnostic efficiency of the model. Results. The mean RI was 142.99 ± 92.17%. Of all clinical parameters and texture features, the AST, ALB, PT-INR, Perc.10%, and S(5, −5)Correlat were found to be statistically significant with RI. The diagnostic sensitivity, specificity, and accuracy of the model in the training group were 0.902, 0.634, and 0.768, and the AUC value of the obtained model was 0.841. In the test group, the sensitivity, specificity, and accuracy of the model were 1.0, 0.429, and 0.778, respectively, and the AUC value was 0.844. Conclusion. The use of texture analysis on preoperative CT combined with clinical features can be helpful in predicting the liver regeneration rate in patients with HCCs after right hepatectomy.

Research Article

Asialoglycoprotein Receptor-Targeted Superparamagnetic Perfluorooctylbromide Nanoparticles

Background. The decrease in asialoglycoprotein receptor (ASGPR) levels is observed in patients with chronic liver disease and liver tumor. The aim of our study was to develop ASGPR-targeted superparamagnetic perfluorooctylbromide nanoparticles (M-PFONP) and wonder whether this composite agent could target buffalo rat liver (BRL) cells in vitro and could improve R2 value of the rat liver parenchyma after its injection in vivo. Methods. GalPLL, a ligand of ASGPR, was synthesized by reductive amination. ASGPR-targeted M-PFOBNP was prepared by a film hydration method coupled with sonication. Several analytical methods were used to investigate the characterization and safety of the contrast agent in vitro. The in vivo MR T2 mapping was performed to evaluate the enhancement effect in rat liver. Results. The optimum concentration of Fe3O4 nanoparticles inclusion in GalPLL/M-PFOBNP was about 52.79 µg/mL, and the mean size was 285.6 ± 4.6 nm. The specificity of GalPLL/M-PFOBNP for ASGPR was confirmed by incubation experiment with fluorescence microscopy. The methyl thiazolyl tetrazolium (MTT) test showed that there was no significant difference in the optical density (OD) of cells incubated with all GalPLL/M-PFOBNP concentrations. Compared with M-PFOBNP, the increase in R2 value of the rat liver parenchyma after GalPLL/M-PFOBNP injection was higher. Conclusions. GalPLL/M-PFOBNP may potentially serve as a liver-targeted contrast agent for MR receptor imaging.

Research Article

Investigation of Specific Targeting of Triptorelin-Conjugated Dextran-Coated Magnetite Nanoparticles as a Targeted Probe in GnRH+ Cancer Cells in MRI

In recent years, the conjugation of superparamagnetic iron oxide nanoparticles (SPIONs), as tumor-imaging probes for magnetic resonance imaging (MRI), with tumor targeting peptides possesses promising advantages for specific delivery of MRI agents. The objective of the current study was to design a targeted contrast agent for MRI based on Fe3O4 nanoparticles conjugated triptorelin (SPION@triptorelin), which has a great affinity to the GnRH receptors. The SPIONs-coated carboxymethyl dextran (SPION@CMD) conjugated triptorelin (SPION@CMD@triptorelin) were synthesized using coprecipitation method and characterized by DLS, TEM, XRD, FTIR, Zeta, and VSM techniques. The relaxivities of synthetized formulations were then calculated using a 1.5 Tesla clinical magnetic field. MRI, quantitative cellular uptake, and cytotoxicity level of them were estimated. The characterization results confirmed that the formation of SPION@CMD@triptorelin has been conjugated with a suitable size. Our results demonstrated the lack of cellular cytotoxicity of SPION@CMD@triptorelin, and it could increase the cellular uptake of SPIONs to MDA-MB-231 cancer cells 6.50-fold greater than to SPION@CMD at the concentration of 75 μM. The relaxivity calculations for SPION@CMD@triptorelin showed a suitable r2 and r2/r1 with values of 31.75 mM−1·s−1 and 10.26, respectively. Our findings confirm that triptorelin-targeted SPIONs could provide a T2-weighted probe contrast agent that has the great potential for the diagnosis of GnRH-positive cancer in MRI.

Research Article

Diagnostic Value of Combined Intravoxel Incoherent Motion Diffusion-Weighted Magnetic Resonance Imaging with Diffusion Tensor Imaging in Predicting Parametrial Infiltration in Cervical Cancer

Objective. This study sought to determine the diagnostic value of combined intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) in predicting parametrial infiltration (PMI) in patients with cervical cancer. Materials and Methods. We enrolled 65 patients with cervical cancer confirmed by radical hysterectomy (25 PMI-negative and 40 PMI-positive) who underwent IVIM and DTI pretreatment. The parameters of IVIM (ADC, D, D, and f) and DTI (average diffusion coefficient (DCavg) and fractional anisotropy (FA)) were recorded by two observers. All parameter differences were tested, and the receiver operating characteristic (ROC) curves were generated to estimate the diagnostic performance of significant metrics and their combinations. Results. Compared to the PMI-negative group, the PMI-positive group had significantly lower D (0.632 ± 0.017 vs. 0.773 ± 0.024, ) and lower FA (0.073 ± 0.002 vs. 0.085 ± 0.003, ). The area under the ROC curve (AUC) of D and FA was 0.801 and 0.726, respectively, and the combination of D and FA improved the AUC to 0.931, with a sensitivity and specificity of 80.0% and 97.5%, respectively. Conclusion. D and FA values could be used to help diagnose PMI in patients with cervical cancer. The combination of IVIM and DTI was more valuable than either option alone.

Research Article

Effect of Doxycycline on Survival in Abdominal Aortic Aneurysms in a Mouse Model

Background. Currently, there is no reliable nonsurgical treatment for abdominal aortic aneurysm (AAA). This study, therefore, investigates if doxycycline reduces AAA growth and the number of rupture-related deaths in a murine ApoE−/− model of AAA and whether gadofosveset trisodium-based MRI differs between animals with and without doxycycline treatment. Methods. Nine ApoE−/− mice were implanted with osmotic minipumps continuously releasing angiotensin II and treated with doxycycline (30 mg/kg/d) in parallel. After four weeks, MRI was performed at 3T with a clinical dose of the albumin-binding probe gadofosveset (0.03 mmol/kg). Results were compared with previously published wild-type control animals and with previously studied ApoE−/− animals without doxycycline treatment. Differences in mortality were also investigated between these groups. Results. In a previous study, we found that approximately 25% of angiotensin II-infused ApoE−/− mice died, whereas in the present study, only one out of 9 angiotensin II-infused and doxycycline-treated ApoE−/− mice (11.1%) died within 4 weeks. Furthermore, doxycycline-treated ApoE−/− mice showed significantly lower contrast-to-noise (CNR) values () in MRI compared to ApoE−/− mice without doxycycline treatment. In vivo measurements of relative signal enhancement (CNR) correlated significantly with ex vivo measurements of albumin staining (R2 = 0.58). In addition, a strong visual colocalization of albumin-positive areas in the fluorescence albumin staining with gadolinium distribution in LA-ICP-MS was shown. However, no significant difference in aneurysm size was observed after doxycycline treatment. Conclusion. The present experimental in vivo study suggests that doxycycline treatment may reduce rupture-related deaths in AAA by slowing endothelial damage without reversing aneurysm growth.

Contrast Media & Molecular Imaging
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate58%
Submission to final decision65 days
Acceptance to publication40 days
CiteScore3.200
Impact Factor1.984
 Submit