Contrast Media & Molecular Imaging
 Journal metrics
Acceptance rate45%
Submission to final decision57 days
Acceptance to publication45 days
CiteScore2.440
Impact Factor1.984
 Submit

Radiomic Analysis of Craniopharyngioma and Meningioma in the Sellar/Parasellar Area with MR Images Features and Texture Features: A Feasible Study

Read the full article

 Journal profile

Contrast Media & Molecular Imaging is an exciting journal in the area of contrast agents and molecular imaging, covering all areas of imaging technologies with a special emphasis on MRI and PET.

 Editor spotlight

Chief Editor, Professor Zimmer, focuses on the development and use of PET radiotracers for new applications of PET/MRI imaging in neuroscience and pharmacology.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

99mTc-68Ga-ICG-Labelled Macroaggregates and Nanocolloids of Human Serum Albumin: Synthesis Procedures of a Trimodal Imaging Agent Using Commercial Kits

Recent developments in sentinel lymph node (SLN) and radio occult lesion localization (ROLL) highlight the need for a multimodal contrast agent, providing better presurgical PET imaging and improved intraoperative mapping thanks to fluorescence detection. For this reason, we have studied a trimodal SLN/ROLL targeting agent (99mTc-68Ga-ICG) with commercially available kits of macroaggregated or nanocolloidal albumin (MA/NC-HSA). 68Ga PET imaging does provide better spatial resolution and makes it possible to predict signal intensity during surgery. The presence of 99mTc assesses the efficacy of these compounds in vitro and also during the surgery procedure. The aim of this study was to optimise the labelling and tagging of these two radiopharmaceuticals and assess their yields and stability. Kits of MA/NC-HSA particles (Pulmocis® and NanoAlbumon®) were used for sequential radiolabelling with 99mTc and 68Ga. Fluorescent tagging was performed using indocyanine green, a tricarbocyanine dye. The ITLC radiochemical purity of the trilabelled MA/NC-HSA was >95%. Fluorescent purity was measured by scanning the strips with a PhotoDynamicEye probe. Finally, in vitro stability tests, performed with DTPA and human serum solutions, assessed the efficacy of fluorescent tagging and radiolabelling.

Clinical Study

Personalization of CM Injection Protocols in Coronary Computed Tomographic Angiography (People CT Trial)

Aim. To evaluate the performance of three contrast media (CM) injection protocols for cardiac computed tomography angiography (CCTA) based on body weight (BW), lean BW (LBW), and cardiac output (CO). Materials and methods. A total of 327 consecutive patients referred for CCTA were randomized into one of the three CM injection protocols, where CM injection was based on either BW (112 patients), LBW (108 patients), or CO (107 patients). LBW and CO were calculated via formulas. All scans were ECG-gated and performed on a third-generation dual-source CT with 70–120 kV (automated tube voltage selection) and 100 kVqual.ref/330 mAsqual.ref. CM injection protocols were also adapted to scan time and tube voltage. The primary outcome was the proportion of patients with optimal intravascular attenuation (325–500 HU). Secondary outcomes were mean and standard deviation of intravascular attenuation values (HU), contrast-to-noise ratio (CNR), and subjective image quality with a 4-point Likert scale (1 = poor/2 = sufficient/3 = good/4 = excellent). The t-test for independent samples was used for pairwise comparisons between groups, and a chi-square test (χ2) was used to compare categorical variables between groups. All values were 2-sided, and a was considered statistically significant. Results. Mean overall HU and CNR were 423 ± 60HU/14 ± 3 (BW), 404 ± 62HU/14 ± 3 (LBW), and 413 ± 63HU/14 ± 3 (CO) with a significant difference between groups BW and LBW (). The proportion of patients with optimal intravascular attenuation (325–500 HU) was 83.9%, 84.3%, and 86.9% for groups BW, LBW, and CO, respectively, and between-group differences were small and nonsignificant. Mean CNR was diagnostic (≥10) in all groups. The proportion of scans with good-excellent image quality was 94.6%, 86.1%, and 90.7% in the BW, LBW, and CO groups, respectively. The difference between proportions was significant between the BW and LBW groups. Conclusion. Personalization of CM injection protocols based on BW, LBW, and CO, and scan time and tube voltage in CCTA resulted in low variation between patients in terms of intravascular attenuation and a high proportion of scans with an optimal intravascular attenuation. The results suggest that personalized CM injection protocols based on LBW or CO have no additional benefit when compared with CM injection protocols based on BW.

Clinical Study

Potential Applications of 68Ga-PSMA-11 PET/CT in the Evaluation of Salivary Gland Uptake Function: Preliminary Observations and Comparison with 99mTcO4 Salivary Gland Scintigraphy

Purpose. To preliminarily evaluate the feasibility and potential of using 68Ga-PSMA-11 PET/CT in evaluating the function of salivary glands and lacrimal glands in comparison with 99mTc-pertechnetate () salivary gland scintigraphy (SGS). Methods. A retrospective study was performed in 15 patients with different degrees of xerostomia and suspected salivary gland dysfunction. Each patient underwent 68Ga-PSMA-11 PET/CT first and SGS the next day, and the findings of both scans were compared. Results. The results of 68Ga-PSMA-11 PET/CT and SGS were consistent in 12/15 patients (80%) and were inconsistent in the remaining patients (20%). For 5 (33.3%) of 15 patients, 68Ga-PSMA-11 PET/CT provided more information than did SGS. Additionally, 68Ga-PSMA-11 PET/CT corrected the misdiagnosis by SGS for 1 patient. Conclusions. 68Ga-PSMA-11 PET/CT is a potentially useful imaging tool for evaluating the function of salivary glands and lacrimal glands. 68Ga-PSMA-11 PET/CT can be a promising supplement to SGS, and its clinical value deserves further study.

Research Article

Assessment of the Relaxation-Enhancing Properties of a Nitroxide-Based Contrast Agent TEEPO-Glc with In Vivo Magnetic Resonance Imaging

Magnetic resonance imaging examinations are frequently carried out using contrast agents to improve the image quality. Practically all clinically used contrast agents are based on paramagnetic metals and lack in selectivity and specificity. A group of stable organic radicals, nitroxides, has raised interest as new metal-free contrast agents for MRI. Their structures can easily be modified to incorporate different functionalities. In the present study, a stable nitroxide TEEPO (2,2,6,6-tetraethylpiperidin-1-oxyl) was linked to a glucose moiety (Glc) to construct a water-soluble, potentially tumor-targeting compound with contrast-enhancing ability. The ability was assessed with in vivo MRI experiments. The constructed TEEPO-Glc agent proved to shorten the T1 relaxation time in tumor, while the T1 time in healthy brain tissue remained the same. The results indicate the potential of TEEPO-Glc as a valuable addition to the growing field of metal-free contrast enhancement in MRI-based diagnostics.

Research Article

Fe-HBED Analogs: A Promising Class of Iron-Chelate Contrast Agents for Magnetic Resonance Imaging

Contrast-enhanced magnetic resonance imaging is an essential tool for disease diagnosis and management; all marketed clinical magnetic resonance imaging (MRI) contrast agents (CAs) are gadolinium (Gd) chelates and most are extracellular fluid (ECF) agents. After intravenous injection, these agents rapidly distribute to the extracellular space and are also characterized by low serum protein binding and predominant renal clearance. Gd is an abiotic element with no biological recycling processes; low levels of Gd have been detected in the central nervous system and bone long after administration. These observations have prompted interest in the development of new MRI contrast agents based on biotic elements such as iron (Fe); Fe-HBED (HBED = N,N′-bis(2-hydroxyphenyl)ethylenediamine-N,N′-diacetic acid), a coordinatively saturated iron chelate, is an attractive MRI CA platform suitable for modification to adjust relaxivity and biodistribution. Compared to the parent Fe-HBED, the Fe-HBED analogs reported here have lower serum protein binding and higher relaxivity as well as lower relative liver enhancement in mice, comparable to that of a representative gadolinium-based contrast agent (GBCA). Fe-HBED analogs are therefore a promising class of non-Gd ECF MRI CA.

Research Article

Gadobutrol Precedes Gd-DTPA in Abdominal Contrast-Enhanced MRA and MRI: A Prospective, Multicenter, Intraindividual Study

Objective. To qualitatively and quantitatively compare the contrast-enhanced magnetic resonance angiography (MRA) and magnetic resonance imaging (MRI) in one-stop shop of abdominal imaging with Gadobutrol and Gd-DTPA at equimolar doses of gadolinium. Materials and Methods. This was a prospective designed, multiple center, intraindividual comparison study. All volunteers underwent Gadobutrol- and Gd-DTPA-enhanced MRA and MRI in one-stop shop. Qualitative analysis for large vessels and small vessels was performed by a three-point scale, while for minute small vessels, by a five-point scale. Quantitative analysis was performed for large vessels by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Visceral organ enhancements on the equilibrium phase were also analyzed. Wilcoxon matched-pair signed-rank tests were used to evaluate the qualitative and quantitative results. Results. 40 volunteers were enrolled. Qualitative analyses results for large vessels, small vessels, and minute small vessels of Gadobutrol and Gd-DTPA were 20.98 ± 2.11, 6.03 ± 1.03, and 3.41 ± 1.18 and 20.01 ± 2.18, 5.28 ± 1.67, and 2.61 ± 1.40, respectively. Wilcoxon signed-rank tests revealed Gadobutrol-enhanced MRA was superior to that of Gd-DTPA significantly for small vessels () and minute small vessels (). For quantitative analysis of large vessels, no statistic difference was found. Gadobutrol-enhanced MRI had higher CNR of the liver (), spleen (), and pancreas () and higher SNR of spleen () than those of Gd-DTPA statistically. Conclusion. Our study proved Gadobutrol was superior to Gd-DTPA in qualitative analysis of CE-MRA and quantitative analysis of visceral organ enhancement on CE-MRI in abdomen of healthy volunteers. Gadobutrol may be more suitable for abdominal one-stop examination for CE-MRA and CE-MRI.

Contrast Media & Molecular Imaging
 Journal metrics
Acceptance rate45%
Submission to final decision57 days
Acceptance to publication45 days
CiteScore2.440
Impact Factor1.984
 Submit
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi