Table of Contents Author Guidelines Submit a Manuscript
Contrast Media & Molecular Imaging
Volume 2017, Article ID 2709547, 14 pages
https://doi.org/10.1155/2017/2709547
Review Article

CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches

1Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
2Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden

Correspondence should be addressed to Diana Spiegelberg; es.uu.pgi@greblegeips.anaid and Johan Nilvebrant; es.htk.hcetoib@tnarbevlin.nahoj

Received 24 February 2017; Revised 23 April 2017; Accepted 21 May 2017; Published 20 June 2017

Academic Editor: Shasha Li

Copyright © 2017 Diana Spiegelberg and Johan Nilvebrant. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. D. Miller, R. L. Siegel, C. C. Lin et al., “Cancer treatment and survivorship statistics, 2016,” CA Cancer Journal for Clinicians, vol. 66, no. 4, pp. 271–289, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Petti, “Lifestyle risk factors for oral cancer,” Oral Oncology, vol. 45, no. 4-5, pp. 340–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Gillison, G. D'Souza, W. Westra et al., “Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers,” Journal of the National Cancer Institute, vol. 100, no. 6, pp. 407–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. R. Leemans, B. J. Braakhuis, and R. H. Brakenhoff, “The molecular biology of head and neck cancer,” Nature Reviews Cancer, vol. 11, no. 1, pp. 9–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K.-H. Heider, M. Sproll, S. Susani et al., “Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas,” Cancer Immunology Immunotherapy, vol. 43, no. 4, pp. 245–253, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. N. L. Van Hal, G. A. Van Dongen, C. B. Ten Brink, J. N. Herron, G. B. Snow, and R. H. Brakenhoff, “Sequence variation in the monoclonal-antibody-U36-defined CD44v6 epitope,” Cancer Immunol Immunother, vol. 45, no. 2, pp. 88–92, 1997. View at Google Scholar
  7. J. Nilvebrant, G. Kuku, H. Björkelund, and M. Nestor, “Selection and in vitro characterization of human CD44v6-binding antibody fragments,” Biotechnology and Applied Biochemistry, vol. 59, no. 5, pp. 367–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-K. Haylock, J. Nilvebrant, A. Mortensen, I. Velikyan, M. Nestor, and R. Falk, “Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers,” Oncotarget, 2017. View at Publisher · View at Google Scholar
  9. A. Alvi and J. T. Johnson, “Development of distant metastasis after treatment of advanced-stage head and neck cancer,” Head Neck, vol. 19, no. 6, pp. 500–505, 1997. View at Google Scholar
  10. S. G. Patel and J. P. Shah, “TNM staging of cancers of the head and neck: striving for uniformity among diversity,” CA: A Cancer Journal for Clinicians, vol. 55, no. 4, pp. 242–258, 2005, quiz 261-242. View at Google Scholar
  11. M. Nishino, J. P. Jagannathan, N. H. Ramaiya, and A. D. Van Den Abbeele, “Revised RECIST guideline version 1.1: What oncologists want to know and what radiologists need to know,” American Journal of Roentgenology, vol. 195, no. 2, pp. 281–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Vosjan, L. R. Perk, G. W. Visser et al., “Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine,” Nature Protocols, vol. 5, no. 4, pp. 739–743, 2010. View at Google Scholar
  13. D. R. Colnot, J. J. Quak, J. C. Roos et al., “Phase I therapy study of 186Re-labeled chimeric monoclonal antibody U36 in patients with squamous cell carcinoma of the head and neck,” Journal of Nuclear Medicine, vol. 41, no. 12, pp. 1999–2010, 2000. View at Google Scholar
  14. M. L. James and S. S. Gambhir, “A molecular imaging primer: modalities, imaging agents, and applications,” Physiological Reviews, vol. 92, no. 2, pp. 897–965, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Weissleder, “Molecular imaging in cancer,” Science, vol. 312, no. 5777, pp. 1168–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. B. Corcoran and R. N. Hanson, “Imaging EGFR and HER2 by PET and SPECT: A Review,” Medicinal Research Reviews, vol. 34, no. 3, pp. 596–643, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. F. T. Lee and A. M. Scott, “Immuno-PET for tumor targeting,” Journal of Nuclear Medicine, vol. 44, no. 8, pp. 1282-1283, 2003. View at Google Scholar
  18. T. K. Nayak and M. W. Brechbiel, “Radioimmunoimaging with longer-lived positron-emitting radionuclides: Potentials and challenges,” Bioconjugate Chemistry, vol. 20, no. 5, pp. 825–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, H. Hong, and W. Cai, “PET tracers based on zirconium-89,” Current Radiopharmaceuticals, vol. 4, no. 2, pp. 131–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Spick, K. Herrmann, and J. Czernin, “18F-FDG PET/CT and PET/MRI perform equally well in cancer: Evidence from studies on more than 2,300 patients,” Journal of Nuclear Medicine, vol. 57, no. 3, pp. 420–430, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Varoquaux, O. Rager, K. O. Lovblad et al., “Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 6, pp. 842–852, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. N. M. Long and C. S. Smith, “Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging,” Insights into Imaging, vol. 2, no. 6, pp. 679–698, 2011. View at Publisher · View at Google Scholar
  23. N. A. Plaxton, D. C. Brandon, A. S. Corey et al., “Characteristics and limitations of FDG PET/CT for imaging of squamous cell carcinoma of the head and neck: A comprehensive review of anatomy, metastatic pathways, and image findings,” American Journal of Roentgenology, vol. 205, no. 5, pp. W519–W531, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Radhakrishnan, M. S. Swanson, and U. K. Sinha, “Monoclonal antibodies as treatment modalities in head and neck cancers,” AIMS Medical Science, vol. 2, no. 4, pp. 347–359, 2015. View at Google Scholar
  25. P. K. E. Börjesson, E. J. Postema, R. De Bree et al., “Radioimmunodetection and radioimmunotherapy of head and neck cancer,” Oral Oncology, vol. 40, no. 8, pp. 761–772, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. V. Nestor, “Targeted radionuclide therapy in head and neck cancer,” Head and Neck, vol. 32, no. 5, pp. 666–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Yao, N. Galanopoulos, P. Lavertu et al., “Phase II study of bevacizumab in combination with docetaxel and radiation in locally advanced squamous cell carcinoma of the head and neck,” Head and Neck, vol. 37, no. 11, pp. 1665–1671, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Warram, E. De Boer, A. G. Sorace et al., “Antibody-based imaging strategies for cancer,” Cancer and Metastasis Reviews, vol. 33, no. 2-3, pp. 809–822, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Wedman, J. Pruim, J. L. N. Roodenburg et al., “Alternative PET tracers in head and neck cancer. A review,” European Archives of Oto-Rhino-Laryngology, vol. 270, no. 10, pp. 2595–2601, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Chames, M. van Regenmortel, E. Weiss, and D. Baty, “Therapeutic antibodies: successes, limitations and hopes for the future,” British Journal of Pharmacology, vol. 157, no. 2, pp. 220–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Spiegelberg, A. C. Mortensen, R. K. Selvaraju, O. Eriksson, B. Stenerlöw, and M. Nestor, “Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 43, no. 5, pp. 974–982, 2016. View at Publisher · View at Google Scholar · View at Scopus
  32. L. K. Van Dijk, O. C. Boerman, J. H. A. M. Kaanders, and J. Bussink, “PET imaging in head and neck cancer patients to monitor treatment response: A future role for EGFR-targeted imaging,” Clinical Cancer Research, vol. 21, no. 16, pp. 3602–3609, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. N. R. Schechter, R. E. Wendt III, D. J. Yang et al., “Radiation dosimetry of 99mTc-labeled C225 in patients with squamous cell carcinoma of the head and neck,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1683–1687, 2004. View at Google Scholar · View at Scopus
  34. J. van Loon, A. J. G. Even, H. J. W. L. Aerts et al., “PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer,” Radiotherapy and Oncology, vol. 122, no. 2, pp. 267–273, 2017. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Ferlito, A. R. Shaha, C. E. Silver, A. Rinaldo, and V. Mondin, “Incidence and sites of distant metastases from head and neck cancer,” ORL J Otorhinolaryngol Relat Spec, vol. 63, no. 4, pp. 202–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Marhaba and M. Zöller, “CD44 in cancer progression: Adhesion, migration and growth regulation,” Journal of Molecular Histology, vol. 35, no. 3, pp. 211–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Perez, D. M. Neskey, J. Wen et al., “CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression,” Oral Oncology, vol. 49, no. 4, pp. 306–313, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Bhaijee, D. J. Pepper, K. T. Pitman, and D. Bell, “Cancer stem cells in head and neck squamous cell carcinoma: a review of current knowledge and future applications,” Head & Neck, vol. 34, no. 6, pp. 894–899, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Orian-Rousseau and H. Ponta, “Perspectives of CD44 targeting therapies,” Archives of Toxicology, vol. 89, no. 1, pp. 3–14, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. M. E. Prince, R. Sivanandan, A. Kaczorowski et al., “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 973–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. H. Sahlberg, D. Spiegelberg, B. Glimelius, B. Stenerlöw, and M. Nestor, “Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells,” PLoS ONE, vol. 9, no. 4, article e94621, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Spiegelberg, G. Kuku, R. Selvaraju, and M. Nestor, “Characterization of CD44 variant expression in head and neck squamous cell carcinomas,” Tumor Biology, vol. 35, no. 3, pp. 2053–2062, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. V. J. M. Wielenga, K.-H. Heider, G. J. A. Offerhaus et al., “Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression,” Cancer Research, vol. 53, no. 20, pp. 4754–4756, 1993. View at Google Scholar · View at Scopus
  44. V. Orian-Rousseau, “CD44, a therapeutic target for metastasising tumours,” European Journal of Cancer, vol. 46, no. 7, pp. 1271–1277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Uniprot Uniprot C., http://www.uniprot.org/uniprot/P16070.
  46. K.-H. Heider, H. Kuthan, G. Stehle, and G. Munzert, “CD44v6: a target for antibody-based cancer therapy,” Cancer Immunology, Immunotherapy, vol. 53, no. 7, pp. 567–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. L. S. Monteiro, M. L. Delgado, S. Ricardo et al., “Prognostic significance of CD44v6, p63, podoplanin and MMP-9 in oral squamous cell carcinomas,” Oral Diseases, vol. 22, no. 4, pp. 303–312, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Verel, K.-H. Heider, M. Siegmund et al., “Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts,” International Journal of Cancer, vol. 99, no. 3, pp. 396–402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. R. P. Baum and H. R. Kulkarni, “Theranostics: From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the bad berka experience,” Theranostics, vol. 2, no. 5, pp. 437–447, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjugate Chemistry, vol. 22, no. 10, pp. 1879–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Günthert, M. Hofmann, W. Rudy et al., “A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells,” Cell, vol. 65, no. 1, pp. 13–24, 1991 (Arabic). View at Publisher · View at Google Scholar · View at Scopus
  52. S. Seiter, R. Arch, S. Reber, D. Komitowski et al., “Prevention of tumor metastasis formation by anti-variant CD44,” Journal of Experimental Medicine, vol. 177, no. 2, pp. 443–455, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. A. H. Schrijvers, J. J. Quak, A. M. Uyterlinde et al., “MAb U36, a novel monoclonal antibody successful in immunotargeting of squamous cell carcinoma of the head and neck,” Cancer Res, vol. 53, no. 18, pp. 4383–4390, 1993. View at Google Scholar
  54. J. J. Quak, A. J. Balm, G. A. van Dongen et al., “A 22-kd surface antigen detected by monoclonal antibody E 48 is exclusively expressed in stratified squamous and transitional epithelia,” The American Journal of Pathology, vol. 136, no. 1, pp. 191–197, 1990. View at Google Scholar
  55. NL. Van Hal, GA. Van Dongen, EM. Rood-Knippels, P. Van Der Valk, GB. Snow, and RH. Brakenhoff, “Monoclonal antibody U36, a suitable candidate for clinical immunotherapy of squamous-cell carcinoma, recognizes a CD44 isoform,” Int J Cancer, vol. 68, no. 4, pp. 520–527, 1996. View at Publisher · View at Google Scholar
  56. R. de Bree, J. C. Roos, J. J. Quak, W. den Hollander, G. B. Snow, and G. A. van Dongen, “Radioimmunoscintigraphy and biodistribution of technetium-99m-labeled monoclonal antibody U36 in patients with head and neck cancer,” Clinical Cancer Research, vol. 1, no. 6, pp. 591–598, 1995. View at Google Scholar
  57. R. H. Brakenhoff, F. B. van Gog, J. E. Looney, M. van Walsum, G. B. Snow, and G. A. van Dongen, “Construction and characterization of the chimeric monoclonal antibody E48 for therapy of head and neck cancer,” Cancer Immunol Immunother, vol. 40, no. 3, pp. 191–200, 1995. View at Google Scholar
  58. I. Verel, G. W. Visser, O. C. Boerman et al., “Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET,” Cancer Biother Radiopharm, vol. 18, no. 4, Article ID 108497803322287745, pp. 655–661, 2003. View at Google Scholar
  59. I. Verel, G. W. Visser, R. Boellaard, M. Stigter-van Walsum, G. B. Snow, and G. A. van Dongen, “89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies,” J Nucl Med, vol. 44, no. 8, pp. 1271–1281, 2003. View at Google Scholar
  60. M. Nestor, K. Andersson, and H. Lundqvist, “Characterization of 111In and 177Lu-labeled antibodies binding to CD44v6 using a novel automated radioimmunoassay,” Journal of Molecular Recognition, vol. 21, no. 3, pp. 179–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Verel, G. W. Visser, M. J. Vosjan, R. Finn, R. Boellaard, and G. A. van Dongen, “High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 12, pp. 1645–1652, 2004. View at Google Scholar
  62. J. Cheng, M. Persson, V. Tolmachev et al., “Targeting of a head and neck squamous cell carcinoma xenograft model using the chimeric monoclonal antibody U36 radioiodinated with a closo-dodecaborate- containing linker,” Acta Oto-Laryngologica, vol. 124, no. 9, pp. 1078–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Sandström, A. K. Haylock, D. Spiegelberg, F. Qvarnström, K. Wester, and M. Nestor, “A novel CD44v6 targeting antibody fragment with improved tumor-to-blood ratio,” International Journal of Oncology, vol. 40, no. 5, pp. 1525–1532, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Nestor, M. Persson, G. A. van Dongen et al., “In vitro evaluation of the astatinated chimeric monoclonal antibody U36, a potential candidate for treatment of head and neck squamous cell carcinoma,” Eur J Nucl Med Mol Imaging, vol. 32, no. 11, pp. 1296–1304, 2005. View at Google Scholar
  65. G. W. Visser, M. Gerretsen, J. D. Herscheid, G. B. Snow, and G. van Dongen, “Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol,” Journal of Nuclear Medicine, vol. 34, no. 11, pp. 1953–1963, 1993. View at Google Scholar · View at Scopus
  66. F. B. van Gog, G. W. Visser, R. Klok, R. van der Schors, G. B. Snow, and G. A. van Dongen, “Monoclonal antibodies labeled with rhenium-186 using the MAG3 chelate: relationship between the number of chelated groups and biodistribution characteristics,” Journal of Nuclear Medicine, vol. 37, no. 2, pp. 352–362, 1996. View at Google Scholar
  67. F. B. van Gog, G. W. Visser, J. W. Stroomer, J. C. Roos, G. B. Snow, and G. A. van Dongen, “High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions,” Cancer, vol. 80, supplement 12, pp. 2360–2370, 1997. View at Google Scholar
  68. K.-H. Heider, J.-W. R. Mulder, E. Ostermann et al., “Splice variants of the cell surface glycoprotein CD44 associated with metastatic tumour cells are expressed in normal tissues of humans and cynomolgus monkeys,” European Journal of Cancer, vol. 31, no. 13-14, pp. 2385–2391, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. J. W. Stroomer, J. C. Roos, M. Sproll et al., “Safety and biodistribution of 99mTechnetium-labeled anti-CD44v6 monoclonal antibody BIWA 1 in head and neck cancer patients,” Clinical Cancer Research, vol. 6, no. 8, pp. 3046–3055, 2000. View at Google Scholar
  70. D. R. Colnot, J. C. Roos, R. de Bree et al., “Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck,” Cancer Immunology, Immunotherapy, vol. 52, no. 9, pp. 576–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. P. K. Borjesson, E. J. Postema, J. C. Roos et al., “Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma,” Clinical Cancer Research, vol. 9, no. 10, part 2, pp. 3961S–3972S, 2003. View at Google Scholar
  72. E. J. Postema, P. K. Borjesson, W. C. Buijs et al., “Dosimetric analysis of radioimmunotherapy with 186Re-labeled bivatuzumab in patients with head and neck cancer,” Journal of Nuclear Medicine, vol. 44, no. 10, pp. 1690–1699, 2003. View at Google Scholar
  73. M. Koppe, F. van Schaijk, J. Roos et al., “Safety, pharmacokinetics, immunogenicity, and biodistribution of 186Re-labeled humanized monoclonal antibody BIWA 4 (Bivatuzumab) in patients with early-stage breast cancer,” Cancer Biotherapy and Radiopharmaceuticals, vol. 19, no. 6, pp. 720–729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. B. M. Tijink, J. Buter, R. de Bree et al., “A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus,” Clinical Cancer Research, vol. 12, no. 20, part 1, pp. 6064–6072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Sauter, C. Kloft, S. Gronau, F. Bogeschdorfer et al., “Pharmacokinetics , immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck,” International Journal of Oncology, vol. 30, no. 4, pp. 927–935, 2007. View at Google Scholar
  76. H. Riechelmann, A. Sauter, W. Golze et al., “Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma,” Oral Oncology, vol. 44, no. 9, pp. 823–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Gurtner, F. Hessel, W. Eicheler et al., “Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo,” Radiotherapy and Oncology, vol. 102, no. 3, pp. 444–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. C. A. Boswell and M. W. Brechbiel, “Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view,” Nuclear Medicine and Biology, vol. 34, no. 7, pp. 757–778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. P. J. Carter, “Potent antibody therapeutics by design,” Nature Reviews Immunology, vol. 6, no. 5, pp. 343–357, 2006. View at Publisher · View at Google Scholar
  80. A. Nelson, E. Dhimolea, and J. M. Reichert, “Development trends for human monoclonal antibody therapeutics,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 767–774, 2010. View at Publisher · View at Google Scholar
  81. J. M. Reichert, “Antibodies to watch in 2017,” mAbs, vol. 9, no. 2, pp. 167–181, 2016. View at Publisher · View at Google Scholar
  82. J. M. Reichert, “Antibodies to watch in 2017,” mAbs, vol. 9, no. 2, pp. 167–181, 2017. View at Publisher · View at Google Scholar
  83. A. L. Nelson, “Antibody fragments: hope and hype,” mAbs, vol. 2, no. 1, pp. 77–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Y. Kim, G. Hussack, H. Kandalaft, and J. Tanha, “Mutational approaches to improve the biophysical properties of human single-domain antibodies,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1844, no. 11, pp. 1983–2001, 2014. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Nilvebrant, P. M. Tessier, and S. S. Sidhu, “Engineered autonomous human variable domains,” Current Pharmaceutical Design, vol. 22, no. 43, pp. 6527–6537, 2016. View at Publisher · View at Google Scholar
  86. T. Ying, R. Gong, T. W. Ju, P. Prabakaran, and D. S. Dimitrov, “Engineered Fc based antibody domains and fragments as novel scaffolds,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1844, no. 11, pp. 1977–1982, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Ying, Y. Wang, Y. Feng et al., “Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn,” mAbs, vol. 7, no. 5, pp. 922–930, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Spiess, Q. Zhai, and P. J. Carter, “Alternative molecular formats and therapeutic applications for bispecific antibodies,” Molecular Immunology, vol. 67, no. 2, part A, pp. 95–106, 2015. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Prassler, S. Thiel, C. Pracht et al., “HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems,” Journal of Molecular Biology, vol. 413, no. 1, pp. 261–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. A.-K. Haylock, D. Spiegelberg, J. Nilvebrant, K. Sandström, and M. Nestor, “In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: A dual-isotope study,” EJNMMI Research, vol. 4, no. 1, pp. 1–13, 2014. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Stenberg, D. Spiegelberg, H. Karlsson, and M. Nestor, “Choice of labeling and cell line influences interactions between the Fab fragment AbD15179 and its target antigen CD44v6,” Nuclear Medicine and Biology, vol. 41, no. 2, pp. 140–147, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. A.-K. Haylock, D. Spiegelberg, A. C. Mortensen et al., “Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma,” International Journal of Oncology, vol. 48, no. 2, pp. 461–470, 2016. View at Publisher · View at Google Scholar · View at Scopus
  93. M. H. Jeoung, T.-K. Kim, H. Shim, and S. Lee, “Development of a sandwich enzyme-linked immunosorbent assay for the detection of CD44v3 using exon v3- and v6-specific monoclonal antibody pairs,” Journal of Immunological Methods, vol. 436, pp. 22–28, 2016. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Chen, K. Huang, X. Li, X. Lin, Z. Zhu, and Y. Wu, “Generation of a stable anti-human CD44v6 scFv and analysis of its cancer-targeting ability in vitro,” Cancer Immunology, Immunotherapy, vol. 59, no. 6, pp. 933–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Zarei, A. A. Bayat, R. Hadavi et al., “Production and Characterization of a Peptide-based Monoclonal Antibody Against CD44 Variant 6,” Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, vol. 34, no. 1, pp. 36–43, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. I. Morath, T. N. Hartmann, and V. Orian-Rousseau, “CD44: More than a mere stem cell marker,” International Journal of Biochemistry and Cell Biology, vol. 81, pp. 166–173, 2016. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Naor, R. V. Sionov, and D. Ish-Shalom, “CD44: structure, function, and association with the malignant process,” Advances in Cancer Research, vol. 71, pp. 241–319, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. V. Orian-Rousseau, L. Chen, J. P. Sleeman, P. Herrlich, and H. Ponta, “CD44 is required for two consecutive steps in HGF/c-Met signaling,” Genes and Development, vol. 16, no. 23, pp. 3074–3086, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Ponta and P. Herrlich, “The CD44 protein family: roles in embryogenesis and tumor progression,” Frontiers in Bioscience, vol. 3, pp. 650–656, 1998. View at Google Scholar
  100. A. Matzke, P. Herrlich, H. Ponta, and V. Orian-Rousseau, “A five-amino-acid peptide blocks Met- and Ron-dependent cell migration,” Cancer Research, vol. 65, no. 14, pp. 6105–6110, 2005. View at Publisher · View at Google Scholar · View at Scopus