Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Contrast Media & Molecular Imaging
Volume 2017, Article ID 7368384, 10 pages
https://doi.org/10.1155/2017/7368384
Research Article

Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

1Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada N6A 5B7
2Department of Medical Biophysics, Western University, London, ON, Canada N6A 5C1
3Department of Medical Imaging, Western University, London, ON, Canada N6A 5B7
4Department of Surgery, Western University, London, ON, Canada N6A 5B7

Correspondence should be addressed to Justin J. Tse; moc.liamg@pjj.est and David W. Holdsworth; ac.strabor@htrowsdlohd

Received 11 July 2017; Revised 11 September 2017; Accepted 2 October 2017; Published 15 November 2017

Academic Editor: Pedro Moreno Pimentel-Coelho

Copyright © 2017 Justin J. Tse et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. LeBlanc and J. B. Hoying, “Adaptation of the coronary microcirculation in aging,” Microcirculation, vol. 23, no. 2, pp. 157–167, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. C. T. Ambrose, “The role of capillaries in the lesser ailments of old age and in Alzheimer's disease and vascular dementia: The potential of pro-therapeutic angiogenesis,” Journal of Alzheimer's Disease, vol. 54, no. 1, pp. 31–43, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Emrani, A. Karbalaie, A. Fatemi, M. Etehadtavakol, and B.-E. Erlandsson, “Capillary density: An important parameter in nailfold capillaroscopy,” Microvascular Research, vol. 109, pp. 7–18, 2017. View at Publisher · View at Google Scholar · View at Scopus
  4. C. N. Hall, C. Reynell, B. Gesslein et al., “Capillary pericytes regulate cerebral blood flow in health and disease,” Nature, vol. 508, no. 1, pp. 55–60, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Katsuumi, I. Shimizu, Y. Yoshida, and T. Minamino, “The pathological role of vascular aging in cardio-metabolic disorder,” Inflammation and Regeneration, vol. 36, article 16, 2016. View at Google Scholar
  6. N. L. Ford, K. C. Graham, A. C. Groom, I. C. MacDonald, A. F. Chambers, and D. W. Holdsworth, “Time-course characterization of the computed tomography contrast enhancement of an iodinated blood-pool contrast agent in mice using a volumetric flat-panel equipped computed tomography scanner,” Investigative Radiology, vol. 41, no. 4, pp. 384–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Physics in Medicine and Biology, vol. 53, no. 19, pp. R319–R350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zagorchev, P. Oses, Z. W. Zhuang et al., “Micro computed tomography for vascular exploration,” Journal of Angiogenesis Research, vol. 2, no. 1, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ding, W. O. C. Ward, T. Wästerlid et al., “Three-dimensional vessel segmentation using a novel combinatory filter framework,” Physics in Medicine and Biology, vol. 59, no. 22, pp. 7013–7029, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. N. L. Ford, M. M. Thornton, and D. W. Holdsworth, “Fundamental image quality limits for microcomputed tomography in small animals,” Medical Physics, vol. 30, no. 11, pp. 2869–2877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. J. Schwartz and S. L. Furth, “Glomerular filtration rate measurement and estimation in chronic kidney disease,” Pediatric Nephrology, vol. 22, no. 11, pp. 1839–1848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. S. Desser, D. L. Rubin, H. Muller, G. L. McIntire, E. R. Bacon, and J. L. Toner, “Blood pool and liver enhancement in CT with liposomal iodixanol: Comparison with iohexol,” Academic Radiology, vol. 6, no. 3, pp. 176–183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Detombe, J. Dunmore-Buyze, and M. Drangova, “Evaluation of eXIA 160XL cardiac-related enhancement in C57BL/6 and BALB/c mice using micro-CT,” Contrast Media & Molecular Imaging, vol. 7, no. 2, pp. 240–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Blery, P. Pilet, A. V. Bossche et al., “Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography,” Journal of Microscopy, vol. 262, no. 1, pp. 40–49, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Detombe, N. L. Ford, F. Xiang, X. Lu, Q. Feng, and M. Drangova, “Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse model using retrospectively gated micro-computed tomography,” Investigative Radiology, vol. 43, no. 7, pp. 520–529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Y. Sheikh, K. E. A. van der Bogt, T. C. Doyle et al., “Micro-CT for characterization of murine CV disease models,” JACC: Cardiovascular Imaging, vol. 3, no. 7, pp. 783–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. Bentley, M. C. Ortiz, E. L. Ritman, and J. C. Romero, “The use of microcomputed tomography to study microvasculature in small rodents,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, vol. 282, no. 5, pp. R1267–R1279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Perrien, M. A. Saleh, K. Takahashi et al., “Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice,” BMC Nephrology, vol. 17, no. 1, pp. 17–24, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Graham, N. L. Ford, L. T. MacKenzie et al., “Noninvasive quantification of tumor volume in preclinical liver metastasis models using contrast-enhanced X-ray computed tomography,” Investigative Radiology, vol. 43, no. 2, pp. 92–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Nyangoga, P. Mercier, H. Libouban, M. F. Baslé, and D. Chappard, “Three-dimensional characterization of the vascular bed in bone metastasis of the rat by microcomputed tomography (MicroCT),” PLoS ONE, vol. 6, no. 3, Article ID e17336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Zamir, J. Twynstra, A. J. Vercnocke et al., “Intrinsic microvasculature of the sciatic nerve in the rat,” Journal of the Peripheral Nervous System, vol. 17, no. 4, pp. 377–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ghanavati, L. X. Yu, J. P. Lerch, and J. G. Sled, “A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT,” Journal of Neuroscience Methods, vol. 221, pp. 70–77, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Cavaglia, S. M. Dombrowski, J. Drazba, A. Vasanji, P. M. Bokesch, and D. Janigro, “Regional variation in brain capillary density and vascular response to ischemia,” Brain Research, vol. 910, no. 1-2, pp. 81–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. L. Duvall, W. R. Taylor, D. Weiss, and R. E. Guldberg, “Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 287, no. 1, pp. H302–H310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Jósza, M. U. K. Lehto, M. Järvinen, M. Kvist, A. Réffy, and P. Kannus, “A comparative study of methods for demonstration and quantification of capillaries in skeletal muscle,” Acta Histochemica, vol. 94, no. 1, pp. 89–96, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. P. V. Granton, S. I. Pollmann, N. L. Ford, M. Drangova, and D. W. Holdsworth, “Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition,” Medical Physics, vol. 35, no. 11, pp. 5030–5042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-Y. Kim, J. O. Sofo, D. Velegol, M. W. Cole, and A. A. Lucas, “Van der waals dispersion forces between dielectric nanoclusters,” Langmuir, vol. 23, no. 4, pp. 1735–1740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. N. M. Kovalchuk and V. M. Starov, “Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions,” Advances in Colloid and Interface Science, vol. 179–182, pp. 99–106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Zhao, D. Ho, S. Gao, C. Hong, D. E. Vatner, and S. F. Vatner, “Arterial pressure monitoring in mice,” Current Protocols in Mouse Biology, vol. 1, pp. 105–122, 2011. View at Google Scholar
  30. T. L. Cunliffe-Beamer, “Health delivery and quality assurance programs for mice,” in The Mouse in Biomedical Research, J. D. Small and J. G. Fox, Eds., pp. 401–437, Academic Press, 1983. View at Google Scholar
  31. M. Marxen, M. M. Thornton, C. B. Chiarot et al., “MicroCT scanner performance and considerations for vascular specimen imaging,” Medical Physics, vol. 31, no. 2, pp. 305–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Dorr, J. G. Sled, and N. Kabani, “Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study,” NeuroImage, vol. 35, no. 4, pp. 1409–1423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Sarhaddi, B. Poushanchi, M. Merati et al., “Validation of histologic bone analysis following Microfil vessel perfusion,” Journal of Histotechnology, vol. 35, no. 4, pp. 180–183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. D. B. Berry, S. You, J. Warner, L. R. Frank, S. Chen, and S. R. Ward, “A 3D tissue-printing approach for validation of diffusion tensor imaging in skeletal muscle,” Tissue Engineering Part A, vol. 23, no. 17-18, pp. 980–988, 2017. View at Publisher · View at Google Scholar
  35. K. Sarveswaran, V. Kurz, Z. Dong, T. Tanaka, S. Penny, and G. Timp, “Synthetic capillaries to control microscopic blood flow,” Scientific Reports, vol. 6, Article ID 21885, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. S. X. Vasquez, F. Gao, F. Su et al., “Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium,” PLoS ONE, vol. 6, no. 4, Article ID e19099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Hillman, S. M. Lee, and G. Wilson, “In vivo barium microangiography in the mouse,” Investigative Radiology, vol. 15, no. 2, pp. 145–147, 1980. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Rytand, “The number and size of mammalian glomeruli as related to kidney and to body weight, with methods for their enumeration and measurement,” American Journal of Anatomy, vol. 62, no. 4, pp. 507–520, 1938. View at Publisher · View at Google Scholar · View at Scopus
  39. P. V. Granton, M. Podesta, G. Landry, S. Nijsten, G. Bootsma, and F. Verhaegen, “A combined dose calculation and verification method for a small animal precision irradiator based on onboard imaging,” Medical Physics, vol. 39, no. 7, pp. 4155–4166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Xu, F. Franchi, B. Miller et al., “Polycystic kidneys have decreased vascular density: a micro-CT study,” Microcirculation, vol. 20, no. 2, pp. 183–189, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Savai, A. C. Langheinrich, R. T. Schermuly et al., “Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer,” Neoplasia, vol. 11, no. 1, pp. 48–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Garcia-Sanz, A. Rodriguez-Barbero, M. D. Bentley, E. L. Ritman, and J. C. Romero, “Three-dimensional microcomputed tomography of renal vasculature in rats,” Hypertension, vol. 31, no. 1, pp. 440–444, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. S. You, H.-Y. Jung, C. Lee et al., “High-performance dendritic contrast agents for X-ray computed tomography imaging using potent tetraiodobenzene derivatives,” Journal of Controlled Release, vol. 226, pp. 258–267, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Zou, Y. Wei, G. Wang et al., “Nanopolymersomes with an ultrahigh iodine content for high-performance X-ray computed tomography imaging in vivo,” Advanced Materials, vol. 29, no. 10, Article ID 1603997, 2017. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Uhrig, D. Simons, D. Bonekamp, and H.-P. Schlemmer, “Improved detection of melanoma metastases by iodine maps from dual energy CT,” European Journal of Radiology, vol. 90, pp. 27–33, 2017. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Danad, B. Ó. Hartaigh, and J. K. Min, “Dual-energy computed tomography for detection of coronary artery disease,” Expert Review of Cardiovascular Therapy, vol. 13, no. 12, pp. 1345–1356, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. H. Lee and G. G. Song, “Diagnostic accuracy of dual-energy computed tomography in patients with gout: a meta-analysis,” Seminars in Arthritis and Rheumatism, vol. 47, no. 1, pp. 95–101, 2017. View at Publisher · View at Google Scholar · View at Scopus