Computational and Mathematical Methods in Medicine

Computational and Mathematical Methods in Medicine / 2002 / Article
Special Issue

Mathematical Modelling and Simulation of Aspects of Cancer Growth

View this Special Issue

Open Access

Volume 4 |Article ID 406920 | https://doi.org/10.1080/10273660290015224

Walter Schubert, "Polymyositis, Topological Proteomics Technology and Paradigm for Cell Invasion Dynamics", Computational and Mathematical Methods in Medicine, vol. 4, Article ID 406920, 10 pages, 2002. https://doi.org/10.1080/10273660290015224

Polymyositis, Topological Proteomics Technology and Paradigm for Cell Invasion Dynamics

Received01 Aug 2000
Accepted23 Apr 2001

Abstract

Polymyositis is an inflammatory myopathy characterized by muscle invasion of T-cells penetrating the basal lamina and displacing the plasma membrane of normal muscle fibers. This investigation presents a technology for the direct mapping of protein networks involved in T-cell invasion in situ. Simultaneous localization of 17 adhesive cell surface receptors reveals 18 different combinatorial expression patterns (CEP), which are unique for the T-cell invasion process in muscle tissue. Each invasion step can be assigned to specific CEP on the surface of individual T-cells. This indicates, that the T-cell invasion is enciphered combinatorially in the T-cells' adhesive cell surface proteome fraction. Given 217 possible combinations, the T-cell appears to have at its disposal a highly non-random restricted repertoire to specify migratory pathways at the cell surface. These higher-level order functions in the cellular proteome cannot be detected by large-scale protein profiling techniques from tissue homogenates. High-throughput whole cell mapping machines working on structurally intact tissues, as shown here, will allow to measure how cells of different origin (immune cells, tumor cells) combine cell surface receptors to encipher specificity and selectivity for interactions.

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views158
Downloads463
Citations