Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 190513, 8 pages
http://dx.doi.org/10.1155/2012/190513
Research Article

Source Activity Correlation Effects on LCMV Beamformers in a Realistic Measurement Environment

1MEG Center, University of Tübingen, Otfried Mueller Street 47, 72076 Tübingen, Germany
2CIMeC, Center of Mind/Brain Sciences, University of Trento, Via Delle Regole 101, 38123 Mattarello, Italy
3DiSCoF, Department of Cognitive and Educational Sciences, University of Trento, Corso Bettini no. 31, 38068 Rovereto, Italy

Received 17 November 2011; Revised 1 February 2012; Accepted 9 February 2012

Academic Editor: Luca Faes

Copyright © 2012 Paolo Belardinelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,” IEEE Signal Processing Magazine, vol. 18, no. 6, pp. 14–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Friston, L. Harrison, J. Daunizeau et al., “Multiple sparse priors for the M/EEG inverse problem,” NeuroImage, vol. 39, no. 3, pp. 1104–1120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Sato, T. Yoshioka, S. Kajihara et al., “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage, vol. 23, no. 3, pp. 806–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. P. Wipf, J. P. Owen, H. T. Attias, K. Sekihara, and S. S. Nagarajan, “Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG,” NeuroImage, vol. 49, no. 1, pp. 641–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Zoltowski, “On the performance analysis of the MVDR beamformer in the presence of correlated interference,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 6, pp. 945–947, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 867–880, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Barnes and A. Hillebrand, “Statistical flattening of MEG beamformer images,” Human Brain Mapping, vol. 18, no. 1, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Belardinelli, L. Ciancetta, M. Staudt et al., “Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions,” NeuroImage, vol. 37, no. 4, pp. 1301–1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Cheyne, A. C. Bostan, W. Gaetz, and E. W. Pang, “Event-related beamforming: a robust method for presurgical functional mapping using MEG,” Clinical Neurophysiology, vol. 118, no. 8, pp. 1691–1704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Gross, J. Kujala, M. Hämäläinen, L. Timmermann, A. Schnitzler, and R. Salmelin, “Dynamic imaging of coherent sources: studying neural interactions in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 694–699, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Gross, L. Timmermann, J. Kujala et al., “The neural basis of intermittent motor control in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2299–2302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Hall, I. E. Holliday, A. Hillebrand et al., “The missing link: analogous human and primate cortical gamma oscillations,” NeuroImage, vol. 26, no. 1, pp. 13–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Hoogenboom, J. M. Schoffelen, R. Oostenveld, L. M. Parkes, and P. Fries, “Localizing human visual gamma-band activity in frequency, time and space,” NeuroImage, vol. 29, no. 3, pp. 764–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Hui, D. Pantazis, S. L. Bressler, and R. M. Leahy, “Identifying true cortical interactions in MEG using the nulling beamformer,” NeuroImage, vol. 49, no. 4, pp. 3161–3174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Litvak, A. Eusebio, A. Jha et al., “Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients,” NeuroImage, vol. 50, no. 4, pp. 1578–1588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Sekihara, S. S. Nagarajan, D. Poeppel, and A. Marantz, “Performance of an MEG adaptive-beamformer technique in the presence of correlated neural activities: effects on signal intensity and time-course estimates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 12, pp. 1534–1546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Sekihara, S. S. Nagarajan, D. Poeppel, and A. Marantz, “Performance of an MEG adaptive-beamformer source reconstruction technique in the presence of additive low-rank interference,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 1, pp. 90–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Wipf and S. Nagarajan, “Beamforming using the relevance vector machine,” in Proceedings of the 24th International Conference on Machine Learning (ICML '07), pp. 1023–1030, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Brookes, C. M. Stevenson, G. R. Barnes et al., “Beamformer reconstruction of correlated sources using a modified source model,” NeuroImage, vol. 34, no. 4, pp. 1454–1465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Zumer, H. T. Attias, K. Sekihara, and S. S. Nagarajan, “A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data,” NeuroImage, vol. 37, no. 1, pp. 102–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Dogandzic and A. Nehorai, “Estimating evoked dipole responses in unknown spatially correlated noise with EEG/MEG arrays,” IEEE Transactions on Signal Processing, vol. 48, no. 1, pp. 13–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Papadelis, V. Poghosyan, P. B. C. Fenwick, and A. A. Ioannides, “MEG's ability to localise accurately weak transient neural sources,” Clinical Neurophysiology, vol. 120, no. 11, pp. 1958–1970, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem,” Physics in Medicine and Biology, vol. 32, no. 1, article 11, 1987. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Schoffelen and J. Gross, “Source connectivity analysis with MEG and EEG,” Human Brain Mapping, vol. 30, no. 6, pp. 1857–1865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Jerbi, J. P. Lachaux, K. N'Diaye et al., “Coherent neural representation of hand speed in humans revealed by MEG imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7676–7681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Fries, “A mechanism for cognitive dynamics: neuronal communication through neuronal coherence,” Trends in Cognitive Sciences, vol. 9, no. 10, pp. 474–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Liljeström, J. Kujala, O. Jensen, and R. Salmelin, “Neuromagnetic localization of rhythmic activity in the human brain: a comparison of three methods,” NeuroImage, vol. 25, no. 3, pp. 734–745, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 285–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Schoffelen, R. Oostenveld, and P. Fries, “Neuronal coherence as a mechanism of effective corticospinal interaction,” Science, vol. 308, no. 5718, pp. 111–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. F. De Pasquale, S. Della Penna, A. Z. Snyder et al., “Temporal dynamics of spontaneous MEG activity in brain networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 6040–6045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13170–13175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. E. Robinson and J. Vrba, “Functional neuroimaging by synthetic aperture magnetometry (SAM),” in Proceedings of the 11th International Conference on Biomagnetism (Biomag '98), pp. 302–305, Sendai, Japan, August 1998.
  35. R. M. Leahy, J. C. Mosher, M. E. Spencer, M. X. Huang, and J. D. Lewine, “A study of dipole localization accuracy for MEG and EEG using a human skull phantom,” Electroencephalography and Clinical Neurophysiology, vol. 107, no. 2, pp. 159–173, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Nolte, “The magnetic lead field theorem in the quasi-static approximation and its use for magnetoenchephalography forward calculation in realistic volume conductors,” Physics in Medicine and Biology, vol. 48, no. 22, pp. 3637–3652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” Journal of Cognitive Neuroscience, vol. 5, no. 2, pp. 162–176, 1993. View at Google Scholar · View at Scopus
  38. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413–497, 1993. View at Google Scholar · View at Scopus
  39. E. Florin, J. Gross, J. Pfeifer, G. R. Fink, and L. Timmermann, “The effect of filtering on Granger causality based multivariate causality measures,” NeuroImage, vol. 50, no. 2, pp. 577–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. P. Lachaux, E. Rodriguez, M. Le Van Quyen, A. Lutz, J. Martinerie, and F. J. Varela, “Studying single-trials of phase synchronous activity in the brain,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 10, no. 10, pp. 2429–2439, 2000. View at Google Scholar · View at Scopus
  41. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Physical Review Letters, vol. 76, no. 11, pp. 1804–1807, 1996. View at Google Scholar · View at Scopus