Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 239210, 13 pages
http://dx.doi.org/10.1155/2012/239210
Review Article

Inferring Functional Neural Connectivity with Phase Synchronization Analysis: A Review of Methodology

1Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
2Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received 25 November 2011; Accepted 31 January 2012

Academic Editor: Dimitris Kugiumtzis

Copyright © 2012 Junfeng Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Tononi, O. Sporns, and G. M. Edelman, “A measure for brain complexity: relating functional segregation and integration in the nervous system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 5033–5037, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Tass, M. G. Rosenblum, J. Weule et al., “Detection of n:m phase locking from noisy data: application to magnetoencephalography,” Physical Review Letters, vol. 81, no. 15, pp. 3291–3294, 1998. View at Google Scholar · View at Scopus
  3. F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. T. Canolty, E. Edwards, S. S. Dalal et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” Science, vol. 313, no. 5793, pp. 1626–1628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Fell and N. Axmacher, “The role of phase synchronization in memory processes,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 105–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. He, L. Yang, C. Wilke, and H. Yuan, “Electrophysiological imaging of brain activity and connectivity—challenges and opportunities,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 7, pp. 1918–1931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Uhlhaas and W. Singer, “Abnormal neural oscillations and synchrony in schizophrenia,” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 100–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Hurtado, L. L. Rubchinsky, and K. A. Sigvardt, “Statistical method for detection of phase-locking episodes in neural oscillations,” Journal of Neurophysiology, vol. 91, no. 4, pp. 1883–1898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ding, S. L. Bressler, W. Yang, and H. Liang, “Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment,” Biological Cybernetics, vol. 83, no. 1, pp. 35–45, 2000. View at Google Scholar · View at Scopus
  10. R. Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, “Performance of different synchronization measures in real data: a case study on electroencephalographic signals,” Physical Review E, vol. 65, no. 4, Article ID 041903, 14 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Kreuz, F. Mormann, R. G. Andrzejak, A. Kraskov, K. Lehnertz, and P. Grassberger, “Measuring synchronization in coupled model systems: a comparison of different approaches,” Physica D, vol. 225, no. 1, pp. 29–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Astolfi, F. De Vico Fallani, F. Cincotti et al., “Estimation of effective and functional cortical connectivity from neuroelectric and hemodynamic recordings,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 3, pp. 224–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, “A comparative study of synchrony measures for the early diagnosis of alzheimer's disease based on EEG,” Neuroimage, vol. 49, no. 1, pp. 668–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, UK, 2001.
  15. R. Brown and L. Kocarev, “A unifying definition of synchronization for dynamical systems,” Chaos, vol. 10, no. 2, pp. 344–349, 2000. View at Google Scholar · View at Scopus
  16. M. Le Van Quyen and A. Bragin, “Analysis of dynamic brain oscillations: methodological advances,” Trends in Neurosciences, vol. 30, no. 7, pp. 365–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Physical Review Letters, vol. 76, no. 11, pp. 1804–1807, 1996. View at Google Scholar · View at Scopus
  18. D. J. DeShazer, R. Breban, E. Ott, and R. Roy, “Detecting phase synchronization in a chaotic laser array,” Physical Review Letters, vol. 87, no. 4, Article ID 044101, 4 pages, 2001. View at Google Scholar · View at Scopus
  19. I. Z. Kiss, Q. Lv, and J. L. Hudson, “Synchronization of non-phase-coherent chaotic electrochemical oscillations,” Physical Review E, vol. 71, no. 3, Article ID 035201, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. G. Kitzbichler, M. L. Smith, S. R. Christensen, and E. Bullmore, “Broadband criticality of human brain network synchronization,” Plos Computational Biology, vol. 5, no. 3, article e1000314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Chávez, M. Le Van Quyen, V. Navarro, M. Baulac, and J. Martinerie, “Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings,” IEEE Transactions on Bio-medical Engineering, vol. 50, no. 5, pp. 571–583, 2003. View at Google Scholar · View at Scopus
  22. W. Wu, J. Sun, Z. Jin et al., “Impaired neuronal synchrony after focal ischemic stroke in elderly patients,” Clinical Neurophysiology, vol. 122, no. 1, pp. 21–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Gysels and P. Celka, “Phase synchronization for the recognition of mental tasks in a brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 4, pp. 406–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Brunner, R. Scherer, B. Graimann, G. Supp, and G. Pfurtscheller, “Online control of a brain-computer interface using phase synchronization,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 12, pp. 2501–2506, 2006. View at Google Scholar
  25. P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Hammond, H. Bergman, and P. Brown, “Pathological synchronization in parkinson's disease: networks, models and treatments,” Trends in Neurosciences, vol. 30, no. 7, pp. 357–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Winterhalder, B. Schelter, J. Kurths, A. Schulze-Bonhage, and J. Timmer, “Sensitivity and specificity of coherence and phase synchronization analysis,” Physics Letters Section A, vol. 356, no. 1, pp. 26–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Sun, X. Hong, and S. Tong, “Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests,” IEEE Transactions on Biomedical Engineering. Submitted.
  29. R. A. Dobie and M. J. Wilson, “Analysis of auditory evoked potentials by magnitude-squared coherence,” Ear and Hearing, vol. 10, no. 1, pp. 2–13, 1989. View at Google Scholar · View at Scopus
  30. S. Kalitzin, J. Parra, D. N. Velis, and F. H. Lopes Da Silva, “Enhancement of phase clustering in the EEG/meg gamma frequency band anticipates transitions to paroxysmal epileptiform activity in epileptic patients with known visual sensitivity,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 11, pp. 1279–1286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Hramov and A. A. Koronovskii, “An approach to chaotic synchronization,” Chaos, vol. 14, no. 3, pp. 603–610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Sun and M. Small, “Unified framework for detecting phase synchronization in coupled time series,” Physical Review E, vol. 80, no. 4, Article ID 046219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Xu, Z. Chen, K. Hu, H. E. Stanley, and P. C. Ivanov, “Spurious detection of phase synchronization in coupled nonlinear oscillators,” Physical Review E, vol. 73, no. 6, Article ID 065201, 2006. View at Google Scholar · View at Scopus
  34. B. Schelter, M. Winterhalder, J. Timmer, and M. Peifer, “Testing for phase synchronization,” Physics Letters Section A, vol. 366, no. 4-5, pp. 382–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. R. Jammalamadaka and A. SenGupta, Topics in Circular Statistics, World Scientific Publishing, Singapore, 2001.
  36. E. Bedrosian, “A product theorem for Hilbert transform,” Proceedings of the IEEE, vol. 51, no. 5, pp. 868–869, 1963. View at Google Scholar
  37. P. J. Loughlin, “Spectrographic measurement of instantaneous frequency and the time-dependent weighted average instantaneous frequency,” Journal of the Acoustical Society of America, vol. 105, no. 1, pp. 264–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. P. M. Oliveira and V. Barroso, “Definitions of instantaneous frequency under physical constraints,” Journal of the Franklin Institute, vol. 337, no. 4, pp. 303–316, 2000. View at Google Scholar · View at Scopus
  39. T. Pereira, M. S. Baptista, and J. Kurths, “Phase and average period of chaotic oscillators,” Physics Letters Section A, vol. 362, no. 2-3, pp. 159–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J. Kurths, “Three types of transitions to phase synchronization in coupled chaotic oscillators,” Physical Review Letters, vol. 91, no. 2, Article ID 024101, 4 pages, 2003. View at Google Scholar · View at Scopus
  41. D. Vakman, “Computer measuring of frequency stability and the analytic signal,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 4, pp. 668–671, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. A. H. Nuttall and E. Bedrosian, “On the quadrature approximation to the hilbert transform of modulated signals,” Proceedings of the IEEE, vol. 54, no. 10, pp. 1458–1459, 1966. View at Google Scholar
  43. S. Aviyente and A. Y. Mutlu, “A time-frequency-based approach to phase and phase synchrony estimation,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3086–3098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Wacker and H. Witte, “Adaptive phase extraction: incorporating the Gabor transform in the matching pursuit algorithm,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 10, pp. 2844–2851, 2011. View at Publisher · View at Google Scholar
  45. D. Vakman, “On the analytic signal the teager-kaiser energy algorithm and other methods for defining amplitude and frequency,” IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 791–797, 1996. View at Google Scholar · View at Scopus
  46. L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA, 1995.
  47. D. Hoyer, O. Hoyer, and U. Zwiener, “A new approach to uncover dynamic phase coordination and synchronization,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 1, pp. 68–74, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Wacker and H. Witte, “On the stability of the n:m phase synchronization index,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 332–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Paluš, “Detecting phase synchronization in noisy systems,” Physics Letters Section A, vol. 235, no. 4, pp. 341–351, 1997. View at Google Scholar · View at Scopus
  50. D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  51. E. T. Bullmore and D. S. Bassett, “Brain graphs: graphical models of the human brain connectome,” Annual Review of Clinical Psychology, vol. 7, pp. 113–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. D. S. Bassett, E. Bullmore, B. A. Verchinski, V. S. Mattay, D. R. Weinberger, and A. Meyer-Lindenberg, “Hierarchical organization of human cortical networks in health and schizophrenia,” Journal of Neuroscience, vol. 28, no. 37, pp. 9239–9248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Liu, M. Liang, Y. Zhou et al., “Disrupted small-world networks in schizophrenia,” Brain, vol. 131, no. 4, pp. 945–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Wu, Y. Taki, K. Sato et al., “Age-related changes in topological organization of structural brain networks in healthy individuals,” Human Brain Mapping, vol. 33, no. 3, pp. 552–568, 2012. View at Publisher · View at Google Scholar
  55. J. Sun, S. Tong, and G.-Y. Yang, “Reorganization of brain networks in aging and age-related diseases,” Aging and Disease. In press.
  56. C. Allefeld and J. Kurths, “Testing for phase synchronization,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14, no. 2, pp. 405–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D, vol. 142, no. 3-4, pp. 346–382, 2000. View at Google Scholar · View at Scopus
  58. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, “Testing for nonlinearity in time series: the method of surrogate data,” Physica D, vol. 58, no. 1–4, pp. 77–94, 1992. View at Google Scholar · View at Scopus
  59. R. G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, and T. Kreuz, “Bivariate surrogate techniques: necessity, strengths, and caveats,” Physical Review E, vol. 68, no. 6, Article ID 066202, 5 pages, 2003. View at Google Scholar · View at Scopus
  60. L. Faes, G. D. Pinna, A. Porta, R. Maestri, and G. Nollo, “Surrogate data analysis for assessing the significance of the coherence function,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1156–1166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Thiel, M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl, “Twin surrogates to test for complex synchronisation,” Europhysics Letters, vol. 75, no. 4, pp. 535–541, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Kurths, M. C. Romano, M. Thiel et al., “Synchronization analysis of coupled noncoherent oscillators,” Nonlinear Dynamics, vol. 44, no. 1–4, pp. 135–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Sun, J. Zhang, J. Zhou, X. Xu, and M. Small, “Detecting phase synchronization in noisy data from coupled chaotic oscillators,” Physical Review E, vol. 77, no. 4, Article ID 046213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. B. C. Lovell and R. C. Williamson, “The statistical performance of some instantaneous frequency estimators,” IEEE Transactions on Signal Processing, vol. 40, no. 7, pp. 1708–1723, 1992. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Hamdan, “Characterizing and approximating infinite scale mixtures of normals,” Communications in Statistics, vol. 35, no. 3, pp. 407–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Van De Ville, J. Britz, and C. M. Michel, “EEG microstate sequences in healthy humans at rest reveal scale-free dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 42, pp. 18179–18184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. P. J. Uhlhaas, D. E. J. Linden, W. Singer et al., “Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia,” Journal of Neuroscience, vol. 26, no. 31, pp. 8168–8175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Hu, M. Stead, Q. Dai, and G. A. Worrell, “On the recording reference contribution to EEG correlation, phase synchorony, and coherence,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 5, pp. 1294–1304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. G. V. Tcheslavski, Coherence and phase synchrony analysis of electroencephalogram, Ph.D. dissertation, the Virginia Polytechnic Institute, State University, Blacksburg, Va, USA, 2005.
  70. M. Vinck, R. Oostenveld, M. Van Wingerden, F. Battaglia, and C. M. A. Pennartz, “An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias,” Neuroimage, vol. 55, no. 4, pp. 1548–1565, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Vinck, M. van Wingerden, T. Womelsdorf, P. Fries, and C. M. A. Pennartz, “The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization,” Neuroimage, vol. 51, no. 1, pp. 112–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem,” Physics in Medicine and Biology, vol. 32, no. 1, article 004, pp. 11–22, 1987. View at Publisher · View at Google Scholar · View at Scopus
  73. P. L. Nunez, R. Srinivasan, A. F. Westdorp et al., “EEG coherency i: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 5, pp. 499–515, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. J. G. Stinstra and M. J. Peters, “The volume conductor may act as a temporal filter on the ecg and EEG,” Medical and Biological Engineering and Computing, vol. 36, no. 6, pp. 711–716, 1998. View at Google Scholar · View at Scopus
  75. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase lag index: assessment of functional connectivity from multi channel EEG and meg with diminished bias from common sources,” Human Brain Mapping, vol. 28, no. 11, pp. 1178–1193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. Wheaton, G. Nolte, S. Bohlhalter, E. Fridman, and M. Hallett, “Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements,” Clinical Neurophysiology, vol. 116, no. 6, pp. 1382–1390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. L. T. Trujillo, M. A. Peterson, A. W. Kaszniak, and J. J. B. Allen, “EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods,” Clinical Neurophysiology, vol. 116, no. 1, pp. 172–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. S. J. Schiff, “Dangerous phase,” Neuroinformatics, vol. 3, no. 4, pp. 315–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Guevara, J. L. P. Velazquez, V. Nenadovic, R. Wennberg, G. Senjanović, and L. G. Dominguez, “Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony?” Neuroinformatics, vol. 3, no. 4, pp. 301–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. H. P. Zaveri, R. B. Duckrow, and S. S. Spencer, “On the use of bipolar montages for time-series analysis of intracranial electroencephalograms,” Clinical Neurophysiology, vol. 117, no. 9, pp. 2102–2108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. O. Bertrand, F. Perrin, and J. Pernier, “A theoretical justification of the average reference in topographic evoked potential studies,” Electroencephalography and Clinical Neurophysiology, vol. 62, no. 6, pp. 462–464, 1985. View at Google Scholar · View at Scopus
  83. H. P. Zaveri, R. B. Duckrow, and S. S. Spencer, “The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms,” Clinical Neurophysiology, vol. 111, no. 7, pp. 1293–1299, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Hu, M. Stead, and G. A. Worrell, “Automatic identification and removal of scalp reference signal for intracranial EEGs based on independent component analysis,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 9, pp. 1560–1572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. J.-P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, “Measuring phase synchrony in brain signals,” Human Brain Mapping, vol. 8, no. 4, pp. 194–208, 1999. View at Google Scholar
  86. L. Li, J. X. Zhang, and T. Jiang, “Visual working memory load-related changes in neural activity and functional connectivity,” Plos One, vol. 6, no. 7, Article ID e22357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, and J. Timmer, “Partial phase synchronization for multivariate synchronizing systems,” Physical Review Letters, vol. 96, no. 20, Article ID 208103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Rudrauf, A. Douiri, C. Kovach et al., “Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals,” Neuroimage, vol. 31, no. 1, pp. 209–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Osterhage, F. Mormann, T. Wagner, and K. Lehnertz, “Detecting directional coupling in the human epileptic brain: limitations and potential pitfalls,” Physical Review E, vol. 77, no. 1, Article ID 011914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Allefeld and S. Bialonski, “Detecting synchronization clusters in multivariate time series via coarse-graining of markov chains,” Physical Review E, vol. 76, no. 6, Article ID 066207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Dahlhaus, “Graphical interaction models for multivariate time series,” Metrika, vol. 51, no. 2, pp. 157–172, 2000. View at Google Scholar · View at Scopus
  92. A. Gunduz and J. C. Principe, “Correntropy as a novel measure for nonlinearity tests,” Signal Processing, vol. 89, no. 1, pp. 14–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. V. Sazonov, C. K. Ho, J. W. M. Bergmans et al., “An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG,” Biological Cybernetics, vol. 100, no. 2, pp. 129–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Bruns, “Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches?” Journal of Neuroscience Methods, vol. 137, no. 2, pp. 321–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. O. David, D. Cosmelli, and K. J. Friston, “Evaluation of different measures of functional connectivity using a neural mass model,” Neuroimage, vol. 21, no. 2, pp. 659–673, 2004. View at Publisher · View at Google Scholar · View at Scopus