Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 245213, 9 pages
http://dx.doi.org/10.1155/2012/245213
Research Article

Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG

1Innovation in Bioengineering Research Group, University of Castilla-La Mancha, Escuela Politécnica, Campus Universitario, 16071 Cuenca, Spain
2Biomedical Synergy, Electronic Engineering Department, Universidad Politécnica de Valencia, 46730 Gandía, Spain

Received 28 May 2012; Revised 4 August 2012; Accepted 20 August 2012

Academic Editor: Thierry Busso

Copyright © 2012 Raúl Alcaraz and José J. Rieta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Fuster, L. E. Rydén, D. S. Cannom et al., “ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for practice guidelines (Writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation),” Circulation, vol. 114, no. 7, pp. e257–e354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Gallagher and J. Camm, “Classification of atrial fibrillation,” American Journal of Cardiology, vol. 82, no. 7, pp. 18N–28N, 1998. View at Google Scholar · View at Scopus
  3. K. T. S. Konings, C. J. H. J. Kirchhof, J. R. L. M. Smeets, H. J. J. Wellens, O. C. Penn, and M. A. Allessie, “High-density mapping of electrically induced atrial fibrillation in humans,” Circulation, vol. 89, no. 4, pp. 1665–1680, 1994. View at Google Scholar · View at Scopus
  4. M. A. Allessie, K. Konings, C. J. H. J. Kirchhof, and M. Wijffels, “Electrophysiologic mechanisms of perpetuation of atrial fibrillation,” American Journal of Cardiology, vol. 77, no. 3, pp. 10A–23A, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Sih, D. P. Zipes, E. J. Berbari, and J. E. Olgin, “A high-temporal resolution algorithm for quantifying organization during atrial fibrillation,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 4, pp. 440–450, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Takahashi, P. Sanders, P. Jaïs et al., “Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 4, pp. 382–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Alcaraz, F. Hornero, and J. J. Rieta, “Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms,” Physiological Measurement, vol. 32, no. 1, pp. 99–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.
  9. R. Gray, Entropy and Information Theory, Springer, New York, NY, USA, 1990.
  10. O. A. Rosso, S. Blanco, J. Yordanova et al., “Wavelet entropy: a new tool for analysis of short duration brain electrical signals,” Journal of Neuroscience Methods, vol. 105, no. 1, pp. 65–75, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Petrutiu, J. Ng, G. M. Nijm et al., “Atrial fibrillation and waveform characterization. A time domain perspective in the surface ECG,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, no. 6, pp. 24–30, 2006. View at Google Scholar
  12. S. M. Al-Khatib, W. E. Wilkinson, L. L. Sanders, E. A. McCarthy, and E. L. C. Pritchett, “Observations on the transition from intermittent to permanent atrial fibrillation,” American Heart Journal, vol. 140, no. 1, pp. 142–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. N. P. Gall and F. D. Murgatroyd, “Electrical cardioversion for AF—the state of the art,” Pacing and Clinical Electrophysiology, vol. 30, no. 4, pp. 554–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Goldberger, L. A. Amaral, L. Glass et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. E215–E220, 2000. View at Google Scholar · View at Scopus
  15. A. Bollmann, D. Husser, L. Mainardi et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, vol. 8, no. 11, pp. 911–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications, Elsevier Academic Press, 2005.
  17. R. Alcaraz and J. J. Rieta, “Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms,” Physiological Measurement, vol. 29, no. 12, pp. 1351–1369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stridh, L. Sörnmo, C. J. Meurling, and S. B. Olsson, “Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 1, pp. 100–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Alcaraz and J. J. Rieta, “Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation,” Physiological Measurement, vol. 29, no. 1, pp. 65–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Alcaraz and J. J. Rieta, “A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation,” Medical and Biological Engineering and Computing, vol. 46, no. 7, pp. 625–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Rafiee, M. A. Rafiee, N. Prause, and M. P. Schoen, “Wavelet basis functions in biomedical signal processing,” Expert Systems with Applications, vol. 38, no. 5, pp. 6190–6201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. S. Addison, “Wavelet transforms and the ECG: a review,” Physiological Measurement, vol. 26, no. 5, pp. R155–R199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Alcaraz and J. J. Rieta, “Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation,” Medical Engineering and Physics, vol. 31, no. 8, pp. 917–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Alcaraz, F. Hornero, and J. J. Rieta, “Noninvasive time and frequency predictors of long-standing atrial fibrillation early recurrence after electrical cardioversion,” Pacing and Clinical Electrophysiology, vol. 34, no. 10, pp. 1241–1250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Alcaraz and J. J. Rieta, “Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion,” Physiological Measurement, vol. 30, no. 5, pp. 479–489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Alcaraz Martínez, J. J. Rieta, and F. Hornero, “Atrial activity non-invasive characterization in previous instants before paroxysmal atrial fibrillation termination,” Revista Espanola de Cardiologia, vol. 61, no. 2, pp. 154–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Nilsson, M. Stridh, A. Bollmann, and L. Sörnmo, “Predicting spontaneous termination of atrial fibrillation using the surface ECG,” Medical Engineering and Physics, vol. 28, no. 8, pp. 802–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Holmqvist, M. Stridh, J. E. P. Waktare, L. Sörnmo, S. B. Olsson, and C. J. Meurling, “Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation,” European Heart Journal, vol. 27, no. 18, pp. 2201–2207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Pálinkás, E. Antonielli, E. Picano et al., “Clinical value of left atrial appendage flow velocity for predicting of cardioversion success in patients with non-valvular atrial fibrillation,” European Heart Journal, vol. 22, no. 23, pp. 2201–2208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Holmqvist, M. Stridh, J. E. P. Waktare et al., “Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation,” Europace, vol. 8, no. 8, pp. 559–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Petrutiu, A. V. Sahakian, J. Ng, and S. Swiryn, “Analysis of the surface electrocardiogram to predict termination of atrial fibrillation: the 2004 computers in cardiology/physioNet challenge,” in Proceedings of the Computers in Cardiology, pp. 105–108, September 2004. View at Scopus
  32. R. Sun and Y. Wang, “Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot,” Medical Engineering and Physics, vol. 30, no. 9, pp. 1105–1111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. N. Watson, P. S. Addison, N. Uchaipichat, A. S. Shah, and N. R. Grubb, “Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients,” Computers in Biology and Medicine, vol. 37, no. 4, pp. 517–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Žohar, M. Kovačič, M. Brezocnik, and M. Podbregar, “Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling,” Europace, vol. 7, no. 5, pp. 500–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Quotb, Y. Bornat, and S. Renaud, “Wavelet transform for real-time detection of action potentials in neural signals,” Frontiers in Neuroengineering, vol. 4, article 7, 2011. View at Google Scholar
  36. Y. H. Pan, Y. H. Wang, S. F. Liang, and K. T. Lee, “Fast computation of sample entropy and approximate entropy in biomedicine,” Computer Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 382–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Calcagnini, F. Censi, A. Michelucci et al., “Descriptors of wavefront propagation. Endocardial mapping of atrial fibrillation with basket catheter,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, no. 6, pp. 71–78, 2006. View at Google Scholar
  38. C. P. Lau and N. S. Lok, “A comparison of transvenous atrial defibrillation of acute and chronic atrial fibrillation and the effect of intravenous sotalol on human atrial defibrillation threshold,” Pacing and Clinical Electrophysiology, vol. 20, no. 10, pp. 2442–2452, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Ndrepepa, M. R. Karch, M. A. E. Schneider et al., “Characterization of paroxysmal and persistent atrial fibrillation in the human left atrium during initiation and sustained episodes,” Journal of Cardiovascular Electrophysiology, vol. 13, no. 6, pp. 525–532, 2002. View at Google Scholar · View at Scopus
  40. H. J. Sih, D. P. Zipes, E. J. Berbari, D. E. Adams, and J. E. Olgin, “Differences in organization between acute and chronic atrial fibrillation in dogs,” Journal of the American College of Cardiology, vol. 36, no. 3, pp. 924–931, 2000. View at Publisher · View at Google Scholar · View at Scopus