Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 346713, 9 pages
http://dx.doi.org/10.1155/2012/346713
Research Article

Influence of Expert-Dependent Variability over the Performance of Noninvasive Fibrosis Assessment in Patients with Chronic Hepatitis C by Means of Texture Analysis

1Computer Science Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, 28 Gheoghe Baritiu Street, 400027 Cluj-Napoca, Romania
2Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania

Received 1 August 2011; Accepted 26 September 2011

Academic Editor: Carlo Cattani

Copyright © 2012 Cristian Vicas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Wu, Y. C. Chen, and K. S. Hsieh, “Texture features for classification of ultrasonic liver images,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 141–152, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. K. J. W. Taylor, C. A. Riely, and L. Hammers, “Quantitative US attenuation in normal liver and in patients with diffuse liver disease: importance of fat,” Radiology, vol. 160, no. 1, pp. 65–71, 1986. View at Google Scholar · View at Scopus
  3. B. J. Oosterveld, J. M. Thijssen, P. C. Hartman, R. L. Romijn, and G. J. E. Rosenbusch, “Ultrasound attenuation and texture analysis of diffuse liver disease: methods and preliminary results,” Physics in Medicine and Biology, vol. 36, no. 8, pp. 1039–1064, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. M. Kadah, A. A. Farag, J. M. Zurada, A. M. Badawi, and A. B. M. Youssef, “Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images,” IEEE Transactions on Medical Imaging, vol. 15, no. 4, pp. 466–478, 1996. View at Google Scholar · View at Scopus
  5. D. Gaitini, Y. Baruch, E. Ghersin et al., “Feasibility study of ultrasonic fatty liver biopsy: texture vs. attenuation and backscatter,” Ultrasound in Medicine and Biology, vol. 30, no. 10, pp. 1321–1327, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. T. Cao, P. F. Shi, and B. Hu, “Liver fibrosis identification based on ultrasound images captured under varied imaging protocols,” Journal of Zhejiang University, vol. 6, no. 11, pp. 1107–1114, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. D. Gaitini, M. Lederman, Y. Baruch et al., “Computerised analysis of liver texture with correlation to needle biopsy,” Ultraschall in der Medizin, vol. 26, no. 3, pp. 197–202, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. H. Yamada, M. Ebara, T. Yamaguchi et al., “A pilot approach for quantitative assessment of liver fibrosis using ultrasound: preliminary results in 79 cases,” Journal of Hepatology, vol. 44, no. 1, pp. 68–75, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. W. Jeong, S. Lee, J. W. Lee, D. S. Yoo, and S. Kim, “The echotextural characteristics for the diagnosis of the liver cirrhosis using the sonographic images,” in Proceedings of the 29th Annual International Conference of Engineering in Medicine and Biology Society (EMBS '07), pp. 1343–1345, August 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. Vicas, S. Nedevschi, M. Lupsor, and R. Badea, “Automatic detection of liver capsule using Gabor filters. Applications in steatosis quantification,” in Proceedings of the IEEE 5th International Conference on Intelligent Computer Communication and Processing (ICCP '09), pp. 133–140, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Bedossa and T. Poynard, “An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group,” Hepatology, vol. 24, no. 2, pp. 289–293, 1996. View at Google Scholar
  12. P. Bedossa, P. Bioulac-Sage, P. Callard et al., “Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C,” Hepatology, vol. 20, no. 1 I, pp. 15–20, 1994. View at Publisher · View at Google Scholar
  13. C. Abe, C. E. Kahn Jr., K. Doi, and S. Katsuragawa, “Computer-aided detection of diffuse liver disease in ultrasound images,” Investigative Radiology, vol. 27, no. 1, pp. 71–77, 1992. View at Google Scholar · View at Scopus
  14. C. Vicas, M. Lupsor, R. Badea, and S. Nedevschi, “Detection of anatomical structures on ultrasound liver images using Gabor filters,” in Proceedings of the 17th IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR '10), pp. 249–253, Romnia, Cluj Napoca, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Materka and M. Strzelecki, Texture Analysis Methods: A Review, Technical University of Lodz, Institute of Electronics, 1998.
  16. A. M. Badawi, A. S. Derbala, and A. B. M. Youssef, “Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images,” International Journal of Medical Informatics, vol. 55, no. 2, pp. 135–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. W. C. Yeh, S. W. Huang, and P. C. Li, “Liver fibrosis grade classification with B-mode ultrasound,” Ultrasound in Medicine and Biology, vol. 29, no. 9, pp. 1229–1235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. W. L. Lee, K. S. Hsieh, Y. C. Chen, and Y. C. Chen, “A study of ultrasonic liver images classification with artificial neural networks based on fractal geometry and multiresolution analysis,” Biomedical Engineering, vol. 16, no. 2, pp. 59–67, 2004. View at Google Scholar · View at Scopus
  19. Y. Xia, D. G. Feng, and R. Zhao, “Morphology-based multifractal estimation for texture segmentation,” IEEE Transactions on Image Processing, vol. 15, no. 3, pp. 614–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ahmadian, A. Mostafa, M. D. Abolhassani, and Y. Salimpour, “A texture classification method for diffused liver diseases using Gabor wavelets,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS '05), pp. 1567–1570, September 2005. View at Scopus
  21. G. Cao, P. Shi, and B. Hu, “Ultrasonic liver characterization using phase congruency,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS '05), pp. 6356–6359, September 2005. View at Scopus
  22. M. H. Horng, Y. N. Sun, and X. Z. Lin, “Texture feature coding method for classification of liver sonography,” Computerized Medical Imaging and Graphics, vol. 26, no. 1, pp. 33–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2005.
  24. J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, Springer Series in Statistics, Springer, 2001.
  25. N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning, vol. 59, no. 1-2, pp. 161–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Hall, Correlation-Based Feature Selection of Discrete and Numeric Class Machine Learning, University of Waikato, 1998.
  27. M. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction, Oxford University Press, Oxford, UK, 2003.
  28. V. Popovici, “Assessment of classification models for medical applications,” in Proceedings of the Workshop on Computers in Medical Diagnoses, Cluj-Napoca, Romania, 2009.
  29. P. Brodatz, Textures: A Photographic Album for Artists and Designers, Dover, New York, NY, USA, 1966.
  30. LIBSVM: a library for support vector machines, 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  31. A. Regev, M. Berho, L. J. Jeffers et al., “Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection,” American Journal of Gastroenterology, vol. 97, no. 10, pp. 2614–2618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Bedossa, D. Dargere, and V. Paradis, “Sampling variability of liver fibrosis in chronic hepatitis C,” Hepatology, vol. 38, no. 6, pp. 1449–1457, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. M. Guido and M. Rugge, “Liver biopsy sampling in chronic viral hepatitis,” Seminars in Liver Disease, vol. 24, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. I. N. Guha and W. M. Rosenberg, “Noninvasive assessment of liver fibrosis: serum markers, imaging, and other modalities,” Clinics in Liver Disease, vol. 12, no. 4, pp. 883–900, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Bonekamp, I. Kamel, S. Solga, and J. Clark, “Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately?” Journal of Hepatology, vol. 50, no. 1, pp. 17–35, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. G. T. Cao, P. F. Shi, and B. Hu, “Liver fibrosis identification based on ultrasound images,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (EMBS '05), vol. 1–7, pp. 6317–6320, September 2005. View at Scopus
  37. A. Mojsilovic, M. Popovic, S. Markovic, and M. Krstic, “Characterization of visually similar diffuse diseases from b-scan liver images using nonseparable wavelet transform,” IEEE Transactions on Medical Imaging, vol. 17, no. 4, pp. 541–549, 1998. View at Google Scholar · View at Scopus
  38. A. Szebeni, G. Tolvaj, and A. Zalatnai, “Correlation of ultrasound attenuation and histopathological parameters of the liver in chronic diffuse liver diseases,” European Journal of Gastroenterology and Hepatology, vol. 18, no. 1, pp. 37–42, 2006. View at Publisher · View at Google Scholar · View at Scopus