Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 410602, 11 pages
http://dx.doi.org/10.1155/2012/410602
Research Article

Modeling the Spatial Distribution of Chronic Tumor Hypoxia: Implications for Experimental and Clinical Studies

1Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1
2Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada M5T 3J1
3Radiation Medicine Program, Princess Margaret Hospital; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada M5G 2M9

Received 30 June 2011; Accepted 17 October 2011

Academic Editor: Dimos Baltas

Copyright © 2012 Gibin Powathil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I .F. Tannock, R. P. Hill, R. G. Bristow, and L. Harrington, The Basic Science of Oncology, McGraw-Hill, New York, NY, USA, 4th edition, 2005.
  2. R. G. Bristow and R. P. Hill, “Hypoxia, DNA repair and genetic instability,” Nature Reviews Cancer, vol. 8, no. 3, pp. 180–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Vaupel, “Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis,” The Oncologist, vol. 13, no. 3, pp. 21–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Ljungkvist, J. Bussink, J. H. A. M. Kaanders, and A. J. Van Der Kogel, “Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers,” Radiation Research, vol. 167, no. 2, pp. 127–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Chaplin, P. L. Olive, and R. E. Durand, “Intermittent blood flow in a murine tumor: radiobiological effects,” Cancer Research, vol. 47, no. 2, pp. 597–601, 1987. View at Google Scholar · View at Scopus
  6. M. Hockel, C. Knoop, K. Schlenger, B. Vorndran, P. G. Knapstein, and P. Vaupel, “Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix,” Advances in Experimental Medicine and Biology, vol. 345, pp. 445–450, 1994. View at Google Scholar · View at Scopus
  7. M. Nordsmark, M. Overgaard, and J. Overgaard, “Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck,” Radiotherapy and Oncology, vol. 41, no. 1, pp. 31–39, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L. Scher, and M. W. Dewhirst, “Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck,” International Journal of Radiation Oncology Biology Physics, vol. 38, no. 2, pp. 285–289, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Trotter, D. J. Chaplin, R. E. Durand, and P. L. Olive, “The use of fluorescent probes to identify regions of transient perfusion in murine tumors,” International Journal of Radiation Oncology Biology Physics, vol. 16, no. 4, pp. 931–934, 1989. View at Google Scholar · View at Scopus
  10. M. Milosevic, A. Fyles, D. Hedley, and R. Hill, “The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure,” Seminars in Radiation Oncology, vol. 14, no. 3, pp. 249–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Kavanagh, A. Sun, Q. Hu, and R. P. Hill, “Comparing techniques of measuring tumor hypoxia in different murine tumors: eppendorf pO2 histograph, [3H]misonidazole binding and paired survival assay,” Radiation Research, vol. 145, no. 4, pp. 491–500, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Raleigh, S. C. Chou, G. E. Arteel, and M. R. Horsman, “Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors,” Radiation Research, vol. 151, no. 5, pp. 580–589, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. W. T. Jenkins, S. M. Evans, and C. J. Koch, “Hypoxia and necrosis in rat 9L glioma and Morris 7777 hepatoma tumors: comparative measurements using EF5 binding and the Eppendorf needle electrode,” International Journal of Radiation Oncology Biology Physics, vol. 46, no. 4, pp. 1005–1017, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. E. R. Gerstner, A. G. Sorensen, R. K. Jain, and T. T. Batchelor, “Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas,” Current Opinion in Neurology, vol. 21, no. 6, pp. 728–735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. W. Secomb, R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F. Gross, “Analysis of oxygen transport to tumor tissue by microvascular networks,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 3, pp. 481–489, 1993. View at Google Scholar · View at Scopus
  16. A. Dasu, I. Toma-Dasu, and M. Karlsson, “Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia,” Physics in Medicine and Biology, vol. 48, no. 17, pp. 2829–2842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. T. W. Secomb, R. Hsu, E. T. Ong, J. F. Gross, and M. W. Dewhirst, “Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors,” Acta Oncologica, vol. 34, no. 3, pp. 313–316, 1995. View at Google Scholar · View at Scopus
  18. M. Kohandel, M. Kardar, M. Milosevic, and S. Sivaloganathan, “Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies,” Physics in Medicine and Biology, vol. 52, no. 13, pp. 3665–3677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. F. J. W. Rijken, H. J. J. A. Bernsen, J. P. W. Peters, R. J. Hodgkiss, J. A. Raleigh, and A. J. Van Der Kogel, “Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi-parameter analysis,” International Journal of Radiation Oncology Biology Physics, vol. 48, no. 2, pp. 571–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Matzavinos, C. Y. Kao, J. E. F. Green, A. Sutradhar, M. Miller, and A. Friedman, “Modeling oxygen transport in surgical tissue transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12091–12096, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. D. Thames and J. H. Hendry, Fractionation in Radiotherapy, Taylor & Francis, London, UK, 1987.
  22. T. Alper and P. Howard-Flanders, “Role of oxygen in modifying the radiosensitivity of E. Coli B,” Nature, vol. 178, no. 4540, pp. 978–979, 1956. View at Publisher · View at Google Scholar · View at Scopus
  23. B. G. Wouters and J. M. Brown, “Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy,” Radiation Research, vol. 147, no. 5, pp. 541–550, 1997. View at Google Scholar · View at Scopus
  24. A. Dasu, I. Toma-Dasu, and M. Karlsson, “The effects of hypoxia on the theoretical modelling of tumour control probability,” Acta Oncologica, vol. 44, no. 6, pp. 563–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Titz and R. Jeraj, “An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response,” Physics in Medicine and Biology, vol. 53, no. 17, pp. 4471–4488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Palcic and L. D. Skarsgard, “Reduced oxygen enhancement ratio at low doses of ionizing radiation,” Radiation Research, vol. 100, no. 2, pp. 328–339, 1984. View at Google Scholar · View at Scopus
  27. L. D. Skarsgard and I. Harrison, “Dose dependence of the oxygen enhancement ratio (OER) in radiation inactivation of Chinese hamster V79-171 cells,” Radiation Research, vol. 127, no. 3, pp. 243–247, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Freyer, K. Jarrett, S. Carpenter, and M. R. Raju, “Oxygen enhancement ratio as a function of dose and cell cycle phase for radiation-resistant and sensitive CHO cells,” Radiation Research, vol. 127, no. 3, pp. 297–307, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. R. K. W. Wong, A. Fyles, M. Milosevic, M. Pintilie, and R. P. Hill, “Heterogeneity of polarographic oxygen tension measurements in cervix cancer: an evaluation of within and between tumor variability, probe position, and track depth,” International Journal of Radiation Oncology Biology Physics, vol. 39, no. 2, pp. 405–412, 1997. View at Google Scholar · View at Scopus
  30. I. Toma-Dasu, A. Waites, A. Daşu, and J. Denekamp, “Theoretical simulation of oxygen tension measurement in tissues using a microelectrode: I. The response function of the electrode,” Physiological Measurement, vol. 22, no. 4, pp. 713–725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. Brizel, G. L. Rosner, L. R. Prosnitz, and M. W. Dewhirst, “Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases,” International Journal of Radiation Oncology Biology Physics, vol. 32, no. 4, pp. 1121–1125, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. P. L. Olive, J. P. Banath, and C. Aquino-Parsons, “Measuring hypoxia in solid tumours: is there a gold standard?” Acta Oncologica, vol. 40, no. 8, pp. 917–923, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Nordsmark, J. Loncaster, C. Aquino-Parsons et al., “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiotherapy and Oncology, vol. 67, no. 1, pp. 35–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Vaupel and L. Harrison, “Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response,” The Oncologist, vol. 9, no. 5, pp. 4–9, 2004. View at Google Scholar · View at Scopus
  35. J. Bussink, J. H. A. M. Kaanders, P. F. J. W. Rijken et al., “Vascular architecture and microenvironmental parameters in human squamous cell carcinoma xenografts: effects of carbogen and nicotinamide,” Radiotherapy and Oncology, vol. 50, no. 2, pp. 173–184, 1999. View at Publisher · View at Google Scholar · View at Scopus