Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 436281, 9 pages
http://dx.doi.org/10.1155/2012/436281
Research Article

A Hybrid Model of Maximum Margin Clustering Method and Support Vector Regression for Noninvasive Electrocardiographic Imaging

1School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
3School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA

Received 3 August 2012; Accepted 8 October 2012

Academic Editor: Dingchang Zheng

Copyright © 2012 Mingfeng Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. K. Cheng, J. M. Bodley, and A. J. Pullan, “Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 1, pp. 11–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Ramanathan, R. N. Ghanem, P. Jia, K. Ryu, and Y. Rudy, “Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia,” Nature Medicine, vol. 10, no. 4, pp. 422–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. M. Van Dam, T. F. Oostendorp, A. C. Linnenbank, and A. Van Oosterom, “Non-invasive imaging of cardiac activation and recovery,” Annals of Biomedical Engineering, vol. 37, no. 9, pp. 1739–1756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Liu, C. Liu, and B. He, “Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density,” IEEE Transactions on Medical Imaging, vol. 25, no. 10, pp. 1307–1318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. F. Nielsen, X. Cai, and M. Lysaker, “On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem,” Mathematical Biosciences, vol. 210, no. 2, pp. 523–553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Jiang, L. Xia, G. Shou, Q. Wei, F. Liu, and S. Crozier, “Effect of cardiac motion on solution of the electrocardiography inverse problem,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 923–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Jiang, L. Xia, W. Huang, G. Shou, F. Liu, and S. Crozier, “The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem,” Medical Engineering and Physics, vol. 31, no. 8, pp. 979–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Wang, H. Zhang, K. C. Wong, H. Liu, and P. Shi, “Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials,” IEEE transactions on Bio-Medical Engineering, vol. 57, no. 2, pp. 296–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Shou, L. Xia, M. Jiang, Q. Wei, F. Liu, and S. Crozier, “Truncated total least squares: a new regularization method for the solution of ECG inverse problems,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 4, pp. 1327–1335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Ramanathan, P. Jia, R. Ghanem, D. Calvetti, and Y. Rudy, “Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method,” Annals of Biomedical Engineering, vol. 31, no. 8, pp. 981–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Jiang, L. Xia, G. Shou, and M. Tang, “Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem,” Physics in Medicine and Biology, vol. 52, no. 5, pp. 1277–1294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Jiang, L. Xia, G. Shou, F. Liu, and S. Crozier, “Two hybrid regularization frameworks for solving the electrocardiography inverse problem,” Physics in Medicine and Biology, vol. 53, no. 18, pp. 5151–5164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ghosh and Y. Rudy, “Application of L1-norm regularization to epicardial potential solution of the inverse electrocardiography problem,” Annals of Biomedical Engineering, vol. 37, no. 5, pp. 902–912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Shou, L. Xia, F. Liu, M. Jiang, and S. Crozier, “On epicardial potential reconstruction using regularization schemes with the L1-norm data term,” Physics in Medicine and Biology, vol. 56, no. 1, pp. 57–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Wang, J. Qin, T. T. Wong, and P. A. Heng, “Application of L1-norm regularization to epicardial potential reconstruction based on gradient projection,” Physics in Medicine and Biology, vol. 56, pp. 6291–6310, 2011. View at Google Scholar
  16. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Jiang, L. Zhu, Y. Wang et al., “Application of kernel principal component analysis and support vector regression for reconstruction of cardiac transmembrane potentials,” Physics in Medicine and Biology, vol. 56, no. 6, pp. 1727–1742, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Mostafa, “Clustering the ecological footprint of nations using Kohonen's self-organizing maps,” Expert Systems with Applications, vol. 37, no. 4, pp. 2747–2755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Ismail, A. Shabri, and R. Samsudin, “A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting,” Expert Systems with Applications, vol. 38, no. 8, pp. 10574–10578, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Hsu, J. P. A. Hsieh, T. C. Chih, and K. C. Hsu, “A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression,” Expert Systems with Applications, vol. 36, no. 4, pp. 7947–7951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, “Maximum margin clustering,” in Advances in Neural Information Processing Systems, vol. 17, pp. 1537–1544, MIT Press, Cambridge, Mass, USA, 2005. View at Google Scholar
  22. L. Xu and D. Schuurmans, “Unsupervised and semi-supervised multi-class support vector machines,” in 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05, pp. 904–910, usa, July 2005. View at Scopus
  23. K. Zhang, I. W. Tsang, and J. T. Kwok, “Maximum margin clustering made practical,” in 24th International Conference on Machine Learning, ICML 2007, pp. 1119–1126, usa, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Zhang, I. W. Tsang, and J. T. Kwok, “Maximum margin clustering made practical,” IEEE Transactions on Neural Networks, vol. 20, no. 4, pp. 583–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Jiang, J. Lv, C. Wang, W. Huang, L. Xia, and G. Shou, “A hybrid model of maximum margin clustering method and support vector regression for solving the inverse ECG problem,” Computing in Cardiology, vol. 38, pp. 457–460, 2011. View at Google Scholar
  26. V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998.
  27. A. Chipperfield, P. Flemming, H. Pohlheim, and C. Fonseca, Genetic Algorithm Toolbox for Use with MATLAB, University of Sheffield, Sheffield, UK, 1994.
  28. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm/.