Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 506908, 10 pages
http://dx.doi.org/10.1155/2012/506908
Research Article

Target Contour Recovering for Tracking People in Complex Environments

1Group TAMS, Department of Informatics, University of Hamburg, 22527 Hamburg, Germany
2College of Information Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
3Department of System Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

Received 13 June 2011; Accepted 18 August 2011

Academic Editor: Shengyong Chen

Copyright © 2012 Jianhua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Y. Chen and Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 480–487, 2011. View at Publisher · View at Google Scholar
  2. S. Y. Chen, “Cardiac deformation mechanics from 4D images,” Electronics Letters, vol. 43, no. 11, pp. 609–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Computing Surveys, vol. 38, no. 4, p. 13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Lobaton, R. Vasudevan, R. Bajcsy, and R. Alterovitz, “Local occlusion detection under deformations using topological invariants,” in Proceedings of the European Conference of Computer Vision, pp. 101–114, 2010.
  5. A. Ayvaci, M. Raptis, and S. Soatto, “Occlusion detection and motion estimation with convex optimization,” in Proceedings of Advances in Neural Information Processing Systems, 2010.
  6. S. Zhang, J. Wu, Y. Tian, S. Liu, and X. Sun, “Robust visual tracking based on occlusion detection and particle redistribution,” in Proceedings of the 2nd International Conference on Internet Multimedia Computing and Service, 2010.
  7. N. Amézquita, R. Alquézar, and F. Serratosa, “Dealing with occlusion in a probabilistic object tracking method,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Yang, S. Z. Li, Q. Pan, and J. Li, “Real-time multiple objects tracking with occlusion handling in dynamic scenes,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 970–975, June 2005. View at Scopus
  9. A. Yilmaz, X. Li, and M. Shah, “Contour-based object tracking with occlusion handling in video acquired using mobile cameras,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1531–1536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. T. Nguyen and A. W. M. Smeulders, “Fast occluded object tracking by a robust appearance filter,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1099–1104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Pan and B. Hu, “Robust occlusion handling in object tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Zhu, J. Zhou, and J. Song, “Tracking multiple objects through occlusion with online sampling and position estimation,” Pattern Recognition, vol. 41, no. 8, pp. 2447–2460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. N. Stein and M. Hebert, “Local detection of occlusion boundaries in video,” Image and Vision Computing, vol. 27, no. 5, pp. 514–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Manay, D. Cremers, B. W. Hong, A. J. Yezzi, and S. Soatto, “Integral invariants for shape matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1602–1617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. v, pp. 567–585, 1992. View at Google Scholar · View at Scopus
  16. B. J. Matuszewski, J. K. Shen, and L. K. Shark, “Elastic image matching with embedded rigid structures using spring-mass system,” in Proceedings of the International Conference on Image Processing, pp. 937–940, September 2003. View at Scopus
  17. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–252, June 1999. View at Scopus
  18. Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density estimation per image pixel for the task of background subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp. 773–780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Zhang, J. H. Wu, and S. W. Smoliar, “System for automatic video segmentation and key frame extraction for video sequences having both sharp and gradual transitions,” US Patent 5635982, 1997.
  20. S. Y. Chen, W. Huang, and C. Cattani, “Traffic dynamics on complex networks: a survey,” Mathematical Problems in Engineering. In press.
  21. M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Latecki, R. Lakaemper, and U. Eckhardt, “Shape descriptors for non-rigid shapes with a single closed contour,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429, June 2000. View at Scopus
  24. K. Koara, A. Nishikawa, and F. Miyazaki, “Hierarchical part decomposition method of articulated body contour, and its application to human body motion measurement,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2055–2061, November 2000. View at Scopus
  25. J. M. Lient, J. Keyser, and N. M. Amato, “Simultaneous shape decomposition and skeletonization,” in Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 219–228, June 2005. View at Scopus