Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 613465, 9 pages
http://dx.doi.org/10.1155/2012/613465
Review Article

Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

1College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2National Key Laboratory of Cognitve Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

Received 29 September 2011; Accepted 25 October 2011

Academic Editor: Carlo Cattani

Copyright © 2012 Shengyong Chen and Xiaoli Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Khadka, S. R. Chityala, F. Tian, and H. Liu, “Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography,” in Photonic Therapeutics and Diagnostics VII, vol. 7883 of Proceedings of SPIE, San Francisco, Calif, USA, January 2011. View at Publisher · View at Google Scholar
  2. Columbia University, “About Functional MRI(General),” 2011, http://www.fmri.org/fmri.htm.
  3. Wikipedia, “Functional magnetic resonance imaging,” 2011, http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging.
  4. J. W. Belliveau, D. N. Kennedy, R. C. McKinstry et al., “Functional mapping of the human visual cortex by magnetic resonance imaging,” Science, vol. 254, no. 5032, pp. 716–719, 1991. View at Google Scholar · View at Scopus
  5. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Nature, vol. 412, no. 6843, pp. 150–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Murayama, F. Biessmann, F. C. Meinecke et al., “Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA,” Magnetic Resonance Imaging, vol. 28, no. 8, pp. 1095–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” NeuroImage, vol. 20, no. 1, pp. 479–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Seymour, J. P. O'Doherty, P. Dayan et al., “Temporal difference models describe higher-order learning in humans,” Nature, vol. 429, no. 6992, pp. 664–667, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Yang, Z. Liu., and B. He, “EEG-fMRI reciprocal functional neuroimaging,” Clinical Neurophysiology, vol. 121, no. 8, pp. 1240–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. F. De Martino, G. Valente, A. W. de Borst et al., “Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI,” Magnetic Resonance Imaging, vol. 28, no. 8, pp. 1104–1112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Williams, M. Magnuson, W. Majeed et al., “Comparison of α-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat,” Magnetic Resonance Imaging, vol. 28, no. 7, pp. 995–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Lee, S. Tak, and J. C. Ye, “A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion,” IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1076–1089, 2011. View at Publisher · View at Google Scholar
  13. K. Whittingstall, A. Bartels, V. Singh, S. Kwon, and N. K. Logothetis, “Integration of EEG source imaging and fMRI during continuous viewing of natural movies,” Magnetic Resonance Imaging, vol. 28, no. 8, pp. 1135–1142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Engel, X. Zhang, and B. Wandell, “Colour tuning in human visual cortex measured with functional magnetic resonance imaging,” Nature, vol. 388, no. 6637, pp. 68–71, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Linling, Q. Wei, B. Lijun, and T. Jie, “Exploring vision-related acupuncture point specificity with multivoxel pattern analysis,” Magnetic Resonance Imaging, vol. 28, no. 3, pp. 380–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Rauch, G. Rainer, M. Augath, A. Oeltermann, and N. K. Logothetis, “Pharmacological MRI combined with electrophysiology in non-human primates: effects of Lidocaine on primary visual cortex,” NeuroImage, vol. 40, no. 2, pp. 590–600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. Lanting, E. de Kleine, R. N. Eppinga, and P. van Dijk, “Neural correlates of human somatosensory integration in tinnitus,” Hearing Research, vol. 267, no. 1-2, pp. 78–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Binder, E. Liebenthal, E. T. Possing, D. A. Medler, and B. D. Ward, “Neural correlates of sensory and decision processes in auditory object identification,” Nature Neuroscience, vol. 7, no. 3, pp. 295–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Viinikainen, I. P. Jääskeläinen, Y. Alexandrov, M. H. Balk, T. Autti, and M. Sams, “Nonlinear relationship between emotional valence and brain activity: evidence of separate negative and positive valence dimensions,” Human Brain Mapping, vol. 31, no. 7, pp. 1030–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. D. Critchley, S. Wiens, P. Rotshtein, A. Öhman, and R. J. Dolan, “Neural systems supporting interoceptive awareness,” Nature Neuroscience, vol. 7, no. 2, pp. 189–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. S. Kannurpatti, M. A. Motes, B. Rypma, and B. B. Biswal, “Neural and vascular variability and the fMRI-BOLD response in normal aging,” Magnetic Resonance Imaging, vol. 28, no. 4, pp. 466–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Lemmin, G. Ganesh, R. Gassert, E. Burdet, M. Kawato, and M. Haruno, “Model-based attenuation of movement artifacts in fMRI,” Journal of Neuroscience Methods, vol. 192, no. 1, pp. 58–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Lu, U. Yezhuvath, and G. Xiao, “Improving fMRI sensitivity by normalization of basal physiologic state,” Human Brain Mapping, vol. 31, no. 1, pp. 80–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Mannfolk, R. Wirestam, M. Nilsson, D. van Westen, F. Ståhlberg, and J. Olsrud, “Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps,” Magnetic Resonance Imaging, vol. 28, no. 7, pp. 947–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Leech and D. Leech, “Testing for spatial heterogeneity in functional MRI using the multivariate general linear model,” IEEE Transactions on Medical Imaging, vol. 30, no. 6, pp. 1293–1302, 2011. View at Publisher · View at Google Scholar
  26. A. Taalimi and E. Fatemizadeh, “A new mathematical approach for detection of active area in human brain fMRI using nonlinear model,” Biomedical Engineering—Applications, Basis and Communications, vol. 22, no. 5, pp. 409–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Missimer, R. J. Seitz, and R. Kleiser, “Data-driven analyses of an fMRI study of a subject experiencing phosphenes,” Journal of Magnetic Resonance Imaging, vol. 31, no. 4, pp. 821–828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Meindl, S. Teipel, R. Elmouden et al., “Test-retest reproducibility of the default-mode network in healthy individuals,” Human Brain Mapping, vol. 31, no. 2, pp. 237–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Duru and M. Ozkan, “Determination of neural fiber connections based on data structure algorithm,” Computational Intelligence and Neuroscience, vol. 2010, Article ID 251928, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Danmei, L. Sheng, Z. Kourtzi, and W. Si, “Behavior-constrained support vector machines for fMRI data analysis,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1680–1685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Reuter, C. Kaufmann, J. Bender, T. Pinkpank, and N. Kathmann, “Distinct neural correlates for volitional generation and inhibition of saccades,” Journal of Cognitive Neuroscience, vol. 22, no. 4, pp. 728–738, 2010. View at Publisher · View at Google Scholar · View at Scopus