Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 672895, 16 pages
Review Article

In Silico Modelling of Tumour Margin Diffusion and Infiltration: Review of Current Status

1Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia
2School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
3Faculty of Sciences, University of Oradea, Oradea, Romania

Received 13 February 2012; Accepted 11 April 2012

Academic Editor: Scott Penfold

Copyright © 2012 Fatemeh Leyla Moghaddasi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


As a result of advanced treatment techniques, requiring precise target definitions, a need for more accurate delineation of the Clinical Target Volume (CTV) has arisen. Mathematical modelling is found to be a powerful tool to provide fairly accurate predictions for the Microscopic Extension (ME) of a tumour to be incorporated in a CTV. In general terms, biomathematical models based on a sequence of observations or development of a hypothesis assume some links between biological mechanisms involved in cancer development and progression to provide quantitative or qualitative measures of tumour behaviour as well as tumour response to treatment. Generally, two approaches are taken: deterministic and stochastic modelling. In this paper, recent mathematical models, including deterministic and stochastic methods, are reviewed and critically compared. It is concluded that stochastic models are more promising to provide a realistic description of cancer tumour behaviour due to being intrinsically probabilistic as well as discrete, which enables incorporation of patient-specific biomedical data such as tumour heterogeneity and anatomical boundaries.