Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 782801, 11 pages
http://dx.doi.org/10.1155/2012/782801
Review Article

Hemodynamics of Cerebral Aneurysms: Computational Analyses of Aneurysm Progress and Treatment

Department of Mechanical Engineering, Myongji University, 38-2 Nam-Dong, Yongin-Si, Kyunggi-Do 449-728, Republic of Korea

Received 22 September 2011; Accepted 10 November 2011

Academic Editor: Eun Bo Shim

Copyright © 2012 Woowon Jeong and Kyehan Rhee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kaminogo, M. Yonekura, and S. Shibata, “Incidence and outcome of multiple intracranial aneurysms in a defined population,” Stroke, vol. 34, no. 1, pp. 16–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. F. H. H. Linn, G. J. E. Rinkel, A. Algra, and J. Van Gijn, “Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis,” Stroke, vol. 27, no. 4, pp. 625–629, 1996. View at Google Scholar · View at Scopus
  3. H. R. Winn, J. A. Jane, J. Taylor, D. Kaiser, and A. G. W. Britz, “Prevalence of asymptomatic incidental aneurysms: review of 4568 arteriograms,” Journal of Neurosurgery, vol. 96, no. 1, pp. 43–49, 2002. View at Google Scholar · View at Scopus
  4. S. Juvela, “Natural history of unruptured intracranial aneurysms: risks for aneurysm formation, growth, and rupture,” Acta Neurochirurgica, Supplement, no. 82, pp. 27–30, 2002. View at Google Scholar · View at Scopus
  5. D. O. Wiebers, “Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment,” Lancet, vol. 362, no. 9378, pp. 103–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Cao and S. E. Rittgers, “Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries,” Annals of Biomedical Engineering, vol. 26, no. 2, pp. 190–199, 1998. View at Google Scholar · View at Scopus
  7. S. Z. Zhao, X. Y. Xu, A. D. Hughes et al., “Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation,” Journal of Biomechanics, vol. 33, no. 8, pp. 975–984, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. P. Yoganathan, J. Ball, Y. R. Woo et al., “Steady flow velocity measurements in a pulmonary artery model with varying degrees of pulmonic stenosis,” Journal of Biomechanics, vol. 19, no. 2, pp. 129–146, 1986. View at Google Scholar · View at Scopus
  9. A. M. Nixon, M. Gunel, and B. E. Sumpio, “The critical role of hemodynamics in the development of cerebral vascular disease: a review,” Journal of Neurosurgery, vol. 112, no. 6, pp. 1240–1253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi, “Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity,” IEEE Transactions on Medical Imaging, vol. 24, no. 4, pp. 457–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Steinman, J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth, “Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,” American Journal of Neuroradiology, vol. 24, no. 4, pp. 559–566, 2003. View at Google Scholar · View at Scopus
  12. C. A. Taylor and D. A. Steinman, “Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions,” Annals of Biomedical Engineering, vol. 38, no. 3, pp. 1188–1203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling,” Computational Mechanics, vol. 43, no. 1, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Valencia, D. Ledermann, R. Rivera, E. Bravo, and M. Galvez, “Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms,” International Journal for Numerical Methods in Fluids, vol. 58, no. 10, pp. 1081–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. R. Cebral, M. A. Castro, O. Soto, R. Löhner, and N. Alperin, “Blood-flow models of the circle of Willis from magnetic resonance data,” Journal of Engineering Mathematics, vol. 47, no. 3-4, pp. 369–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Cebral and R. Lhner, “From medical images to anatomically accurate finite element grids,” International Journal for Numerical Methods in Engineering, vol. 51, no. 8, pp. 985–1008, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Yim, J. J. Cebral, R. Mullick, H. B. Marcos, and P. L. Choyke, “Vessel surface reconstruction with a tubular deformable model,” IEEE Transactions on Medical Imaging, vol. 20, no. 12, pp. 1411–1421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Castro, C. M. Putman, and J. R. Cebral, “Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics,” American Journal of Neuroradiology, vol. 27, no. 8, pp. 1703–1709, 2006. View at Google Scholar · View at Scopus
  19. P. Yim, K. DeMarco, M. A. Castro, and J. Cebral, “Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics,” Studies in Health Technology and Informatics, vol. 113, pp. 412–422, 2005. View at Google Scholar
  20. C. Karmonik, C. Yen, O. Diaz, R. Klucznik, R. G. Grossman, and G. Benndorf, “Temporal variations of wall shear stress parameters in intracranial aneurysms-importance of patient-specific inflow waveforms for CFD calculations,” Acta Neurochirurgica, vol. 152, no. 8, pp. 1391–1398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Karmonik, C. Yen, R. G. Grossman, R. Klucznik, and G. Benndorf, “Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates,” Acta Neurochirurgica, vol. 151, no. 5, pp. 479–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Spiegel, T. Redel, Y. J. Zhang et al., “Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 1, pp. 9–22, 2011. View at Publisher · View at Google Scholar
  23. F. Bonneville, N. Sourour, and A. Biondi, “Intracranial Aneurysms: an overview,” Neuroimaging Clinics of North America, vol. 16, no. 3, pp. 371–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Rhoton, “Aneurysms,” Neurosurgery, vol. 51, no. 4, pp. 121–158, 2002. View at Google Scholar · View at Scopus
  25. L. Gao, Y. Hoi, D. D. Swartz, J. Kolega, A. Siddiqui, and H. Meng, “Nascent aneurysm formation at the basilar terminus induced by hemodynamics,” Stroke, vol. 39, no. 7, pp. 2085–2090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Meng, Z. Wang, Y. Hoi et al., “Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,” Stroke, vol. 38, no. 6, pp. 1924–1931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Altes, H. J. Cloft, J. G. Short et al., “Creation of saccular aneurysms in the rabbit: a model suitable for testing endovascular devices,” American Journal of Roentgenology, vol. 174, no. 2, pp. 349–354, 2000. View at Google Scholar · View at Scopus
  28. N. H. Fujiwara, H. J. Cloft, W. F. Marx, J. G. Short, M. E. Jensen, and D. F. Kallmes, “Serial angiography in an elastase-induced aneurysm model in rabbits: evidence for progressive aneurysm enlargement after creation,” American Journal of Neuroradiology, vol. 22, no. 4, pp. 698–703, 2001. View at Google Scholar · View at Scopus
  29. H. Meng, E. Metaxa, Z. Wang et al., “Vascular response to impinging blood flow,” in Proceedings of the BMES Annual Fall Meeting, Baltimore, MD, USA, 2005.
  30. M. Shojima, M. Oshima, K. Takagi et al., “Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms,” Stroke, vol. 36, no. 9, pp. 1933–1938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Hoi, H. Meng, S. H. Woodward et al., “Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study,” Journal of Neurosurgery, vol. 101, no. 4, pp. 676–681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Fukuda, N. Hashimoto, H. Naritomi et al., “Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase,” Circulation, vol. 101, no. 21, pp. 2532–2538, 2000. View at Google Scholar · View at Scopus
  33. S. Kondo, N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, and H. Kataoka, “Cerebral aneurysms arising at nonbranching sites: an experimental study,” Stroke, vol. 28, no. 2, pp. 398–404, 1997. View at Google Scholar · View at Scopus
  34. S. Chien, S. Li, and J. Y. J. Shyy, “Effects of mechanical forces on signal transduction and gene expression in endothelial cells,” Hypertension, vol. 31, no. 1, pp. 162–169, 1998. View at Google Scholar · View at Scopus
  35. P. F. Davies, “Flow-mediated endothelial mechanotransduction,” Physiological Reviews, vol. 75, no. 3, pp. 519–560, 1995. View at Google Scholar · View at Scopus
  36. P. F. Davies, K. A. Barbee, M. V. Volin et al., “Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction,” Annual Review of Physiology, vol. 59, pp. 527–549, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Mantha, C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe, “Hemodynamics in a cerebral artery before and after the formation of an aneurysm,” American Journal of Neuroradiology, vol. 27, no. 5, pp. 1113–1118, 2006. View at Google Scholar · View at Scopus
  38. J. Y. J. Shyy, “Mechanotransduction in endothelial responses to shear stress: review of work in Dr. Chien's laboratory,” Biorheology, vol. 38, no. 2-3, pp. 109–117, 2001. View at Google Scholar · View at Scopus
  39. W. E. Stehbens, “Histopathology of cerebral aneurysms,” Archives of neurology, vol. 8, pp. 272–285, 1963. View at Google Scholar · View at Scopus
  40. O. Traub and B. C. Berk, “Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 5, pp. 677–685, 1998. View at Google Scholar · View at Scopus
  41. W. E. Stehbens, “Etiology of intracranial berry aneurysms,” Journal of Neurosurgery, vol. 70, no. 6, pp. 823–831, 1989. View at Google Scholar · View at Scopus
  42. D. Chyatte and I. Lewis, “Gelatinase activity and the occurrence of cerebral aneurysms,” Stroke, vol. 28, no. 4, pp. 799–804, 1997. View at Google Scholar · View at Scopus
  43. G. Bruno, R. Todor, I. Lewis, and D. Chyatte, “Vascular extracellular matrix remodeling in cerebral aneurysms,” Journal of Neurosurgery, vol. 89, no. 3, pp. 431–440, 1998. View at Google Scholar · View at Scopus
  44. H. D. Intengan and E. L. Schiffrin, “Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis,” Hypertension, vol. 38, no. 3, pp. 581–587, 2001. View at Google Scholar · View at Scopus
  45. A. Hara, N. Yoshimi, and H. Mori, “Evidence for apoptosis in human intracranial aneurysms,” Neurological Research, vol. 20, no. 2, pp. 127–130, 1998. View at Google Scholar · View at Scopus
  46. S. Kondo, N. Hashimoto, H. Kikuchi, F. Hazama, I. Nagata, and H. Kataoka, “Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats,” Stroke, vol. 29, no. 1, pp. 181–189, 1998. View at Google Scholar
  47. B. L. Langille, “Arterial remodeling: relation to hemodynamics,” Canadian Journal of Physiology and Pharmacology, vol. 74, no. 7, pp. 834–841, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. A. C. Burleson, C. M. Strother, V. T. Turitto, H. H. Batjer, S. Kobayashi, and R. E. Harbaugh, “Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics,” Neurosurgery, vol. 37, no. 4, pp. 774–784, 1995. View at Google Scholar · View at Scopus
  49. I. Chatziprodromou, A. Tricoli, D. Poulikakos, and Y. Ventikos, “Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model,” Journal of Biomechanics, vol. 40, no. 2, pp. 412–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Hoi, S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng, “Validation of CFD simulations of cerebral aneurysms with implication of geometric variations,” Journal of Biomechanical Engineering, vol. 128, no. 6, pp. 844–851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Utter and J. S. Rossmann, “Numerical simulation of saccular aneurysm hemodynamics: influence of morphology on rupture risk,” Journal of Biomechanics, vol. 40, no. 12, pp. 2716–2722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman, “Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models,” American Journal of Neuroradiology, vol. 26, no. 10, pp. 2550–2559, 2005. View at Google Scholar · View at Scopus
  53. M. Shojima, M. Oshima, K. Takagi et al., “Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms,” Stroke, vol. 35, no. 11, pp. 2500–2505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Feng, S. Wada, K. I. Tsubota, and T. Yamaguchi, “The application of computer simulation in the genesis and development of intracranial aneurysms,” Technology and Health Care, vol. 13, no. 4, pp. 281–291, 2005. View at Google Scholar · View at Scopus
  55. Y. Feng, S. Wada, K. I. Tsubota, and T. Yamaguchi, “Growth of intracranial aneurysms arised from curved vessels under the influence of elevated wall shear stress—a computer simulation study,” JSME International Journal, Series C, vol. 47, no. 4, pp. 1035–1042, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Boussel, V. Rayz, C. McCulloch et al., “Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study,” Stroke, vol. 39, no. 11, pp. 2997–3002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Glagov, C. Zarins, D. P. Giddens, and D. N. Ku, “Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries,” Archives of Pathology and Laboratory Medicine, vol. 112, no. 10, pp. 1018–1031, 1988. View at Google Scholar · View at Scopus
  58. D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov, “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 5, no. 3, pp. 293–302, 1985. View at Google Scholar
  59. C. K. Zarins, D. P. Giddens, and B. K. Bharadvaj, “Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress,” Circulation Research, vol. 53, no. 4, pp. 502–514, 1983. View at Google Scholar
  60. J. Frösen, A. Piippo, A. Paetau et al., “Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases,” Stroke, vol. 35, no. 10, pp. 2287–2293, 2004. View at Publisher · View at Google Scholar
  61. A. M. Malek, S. L. Alper, and S. Izumo, “Hemodynamic shear stress and its role in atherosclerosis,” Journal of the American Medical Association, vol. 282, no. 21, pp. 2035–2042, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Kaiser, M. A. Freyberg, and P. Friedl, “Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 231, no. 3, pp. 586–590, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. A. A. Valencia, A. M. Guzmán, E. A. Finol, and C. H. Amon, “Blood flow dynamics in saccular aneurysm models of the basilar artery,” Journal of Biomechanical Engineering, vol. 128, no. 4, pp. 516–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Kamiya and T. Togawa, “Adaptive regulation of wall shear stress to flow change in the canine carotid artery,” The American Journal of Physiology, vol. 239, no. 1, pp. H14–H21, 1980. View at Google Scholar · View at Scopus
  65. P. C. Smiesko and V. Johnson, “The arterial lumen is controlled by flow-related shear stress,” Physiology, vol. 8, pp. 34–38, 1993. View at Google Scholar
  66. F. Tronc, M. Wassef, B. Esposito, D. Henrion, S. Glagov, and A. Tedgui, “Role of NO in flow-induced remodeling of the rabbit common carotid artery,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 10, pp. 1256–1262, 1996. View at Google Scholar · View at Scopus
  67. C. K. Zarins, M. A. Zatina, and D. P. Giddens, “Shear stress regulation of artery lumen diameter in experimental atherogenesis,” Journal of Vascular Surgery, vol. 5, no. 3, pp. 413–420, 1987. View at Google Scholar
  68. J. R. Cebral, F. Mut, J. Weir, and C. M. Putman, “Association of hemodynamic characteristics and cerebral aneurysm rupture,” American Journal of Neuroradiology, vol. 32, no. 2, pp. 264–270, 2011. View at Publisher · View at Google Scholar
  69. G. N. Foutrakis, H. Yonas, and R. J. Sclabassi, “Saccular aneurysm formation in curved and bifurcating arteries,” American Journal of Neuroradiology, vol. 20, no. 7, pp. 1309–1317, 1999. View at Google Scholar · View at Scopus
  70. J. R. Cebral, M. Hernandez, and A. F. Frangi, “Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rotational angiography image data,” in Proceedings of the International Congress on Computational Bioengineering, pp. 191–198, Zaragoza, Spain, 2003.
  71. A. Valencia, H. Morales, R. Rivera, E. Bravo, and M. Galvez, “Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index,” Medical Engineering and Physics, vol. 30, no. 3, pp. 329–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Lu, L. Huang, X. L. Zhang et al., “Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation,” American Journal of Neuroradiology, vol. 32, no. 7, pp. 1255–1261, 2011. View at Publisher · View at Google Scholar
  73. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures,” Computational Mechanics, vol. 38, no. 4-5, pp. 482–490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms,” International Journal for Numerical Methods in Fluids, vol. 65, no. 1–3, pp. 324–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. G. Isaksen, Y. Bazilevs, T. Kvamsdal et al., “Determination of wall tension in cerebral artery aneurysms by numerical simulation,” Stroke, vol. 39, no. 12, pp. 3172–3178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Groden, J. Laudan, S. Gatchell, and H. Zeumer, “Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 12, pp. 1464–1471, 2001. View at Google Scholar · View at Scopus
  77. S. I. Stiver, P. J. Porter, R. A. Willinsky, and M. C. Wallace, “Acute human histopathology of an intracranial aneurysm treated using Guglielmi detachable coils: case report and review of the literature,” Neurosurgery, vol. 43, no. 5, pp. 1203–1207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Tenjin, S. Fushiki, Y. Nakahara et al., “Effect of Guglielmi detachable coils on experimental carotid artery aneurysms in primates,” Stroke, vol. 26, no. 11, pp. 2075–2080, 1995. View at Google Scholar · View at Scopus
  79. M. B. Horowitz, P. D. Purdy, D. Burns, and D. Bellotto, “Scanning electron microscopic findings in a basilar tip aneurysm embolized with guglielmi detachable coils,” American Journal of Neuroradiology, vol. 18, no. 4, pp. 688–690, 1997. View at Google Scholar · View at Scopus
  80. S. Shimizu, A. Kurata, M. Takano et al., “Tissue response of a small saccular aneurysm after incomplete occlusion with a Guglielmi detachable coil,” American Journal of Neuroradiology, vol. 20, no. 4, pp. 546–548, 1999. View at Google Scholar · View at Scopus
  81. H. S. Byun and K. Rhee, “CFD modeling of blood flow following coil embolization of aneurysms,” Medical Engineering and Physics, vol. 26, no. 9, pp. 755–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Ahmed, I. D. Šutalo, and H. Kavnoudias, “Hemodynamics and stress distribution in a cerebral aneurysm partially blocked with coils,” in Proceedings of the 5th International Conference on CFD in the Process Industries CSIRO, pp. 13–15, Melbourne, Australia, 2006.
  83. N. M. P. Kakalis, A. P. Mitsos, J. V. Byrne, and Y. Ventikos, “The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment,” IEEE Transactions on Medical Imaging, vol. 27, no. 6, Article ID 4531637, pp. 814–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. P. Mitsos, N. M. P. Kakalis, Y. P. Ventikos, and J. V. Byrne, “Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note,” Neuroradiology, vol. 50, no. 4, pp. 341–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Narracott, S. Smith, P. Lawford et al., “Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms,” Journal of Artificial Organs, vol. 8, no. 1, pp. 56–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Wei, S. Cotin, J. Allard, L. Fang, C. Pan, and S. Ma, “Interactive blood-coil simulation in real-time during aneurysm embolization,” Computers and Graphics, vol. 35, no. 2, pp. 422–430, 2011. View at Publisher · View at Google Scholar
  87. K. Baráth, F. Cassot, D. A. Rüfenacht, and J. H. D. Fasel, “Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect,” American Journal of Neuroradiology, vol. 25, no. 10, pp. 1750–1759, 2004. View at Google Scholar · View at Scopus
  88. K. Baráth, F. Cassot, J. H. D. Fasel, M. Ohta, and D. A. Rüfenacht, “Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models,” Neurological Research, vol. 27, no. 1, pp. S120–S128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. B. B. Lieber, A. P. Stancampiano, and A. K. Wakhloo, “Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity,” Annals of Biomedical Engineering, vol. 25, no. 3, pp. 460–469, 1997. View at Google Scholar · View at Scopus
  90. K. Rhee, M. H. Han, and S. H. Cha, “Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity,” Annals of Biomedical Engineering, vol. 30, no. 7, pp. 894–904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. B. B. Lieber, V. Livescu, L. N. Hopkins, and A. K. Wakhloo, “Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow,” Annals of Biomedical Engineering, vol. 30, no. 6, pp. 768–777, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. S. C. M. Yu and J. B. Zhao, “A steady flow analysis on the stented and non-stented sidewall aneurysm models,” Medical Engineering and Physics, vol. 21, no. 3, pp. 133–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. T. M. Liou, W. C. Chang, and C. C. Liao, “LDV measurements in lateral model aneurysms of various sizes,” Experiments in Fluids, vol. 23, no. 4, pp. 317–324, 1997. View at Google Scholar · View at Scopus
  94. S. Tateshima, Y. Murayama, J. P. Villablanca et al., “In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs,” Stroke, vol. 34, no. 1, pp. 187–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Aenis, A. P. Stancampiano, A. K. Wakhloo, and B. B. Lieber, “Modeling of flow in a straight stented and nonstented side wall aneurysm model,” Journal of Biomechanical Engineering, vol. 119, no. 2, pp. 206–212, 1997. View at Google Scholar · View at Scopus
  96. M. Ohta, S. G. Wetzel, P. Dantan et al., “Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach,” CardioVascular and Interventional Radiology, vol. 28, no. 6, pp. 768–772, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. J. R. Cebral, M. Hernandez, A. F. Frangi, C. M. Putman, R. Pergolizzi, and J. E. Burgess, “Subject-specific modeling of intracranial aneurysms,” in Medical Imaging, Proceedings of SPIE, pp. 319–327, 2004.
  98. J. R. Cebral and R. Loehner, “Flow visualization on unstructured grids using geometrical cuts, vortex detection and shock surfaces,” in Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev, USA, 2001.
  99. J. R. Cebral and R. Lhner, “From medical images to anatomically accurate finite element grids,” International Journal for Numerical Methods in Engineering, vol. 51, no. 8, pp. 985–1008, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. L. D. Jou, C. M. Quick, W. L. Young et al., “Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms,” American Journal of Neuroradiology, vol. 24, no. 9, pp. 1804–1810, 2003. View at Google Scholar · View at Scopus
  101. R. Löhner, “Regridding surface triangulations,” Journal of Computational Physics, vol. 126, no. 1, pp. 1–10, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Lohner, “Automatic unstructured grid generators,” Finite Elements in Analysis and Design, vol. 25, no. 1-2, pp. 111–134, 1997. View at Google Scholar
  103. J. R. Cebral, F. Mut, M. Raschi et al., “Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment,” American Journal of Neuroradiology, vol. 32, pp. 27–33, 2011. View at Google Scholar
  104. S. Appanaboyina, F. Mut, R. Löhner, C. Putman, and J. Cebral, “Simulation of intracranial aneurysm stenting: techniques and challenges,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 45-46, pp. 3567–3582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Appanaboyina, F. Mut, R. Löhner, C. M. Putman, and J. R. Cebral, “Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids,” International Journal for Numerical Methods in Fluids, vol. 57, no. 5, pp. 475–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. R. Cebral and R. Löhner, “Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique,” IEEE Transactions on Medical Imaging, vol. 24, no. 4, pp. 468–476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. L. Augsburger, P. Reymond, D. A. Rufenacht, and N. Stergiopulos, “Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms,” Annals of Biomedical Engineering, vol. 39, pp. 850–863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Chopard, R. Ouared, D. A. Ruefenacht, and H. Yilmaz, “Lattice Boltzmann modeling of thrombosis in giant aneurysms,” International Journal of Modern Physics C, vol. 18, no. 4, pp. 712–721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Chopard, R. Ouared, and D. A. Rüfenacht, “A lattice Boltzmann simulation of clotting in stented aneursysms and comparison with velocity or shear rate reductions,” Mathematics and Computers in Simulation, vol. 72, no. 2–6, pp. 108–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Ouared, B. Chopard, B. Stahl, D. A. Rüfenacht, H. Yilmaz, and G. Courbebaisse, “Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm,” Computer Physics Communications, vol. 179, no. 1–3, pp. 128–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Tateshima, J. Grinstead, S. Sinha et al., “Intraaneurysmal flow visualization by using phase-contrast magnetic resonance imaging: feasibility study based on a geometrically realistic in vitro aneurysm model,” Journal of Neurosurgery, vol. 100, no. 6, pp. 1041–1048, 2004. View at Google Scholar · View at Scopus
  112. Y. P. Gobin, J. L. Counord, P. Flaud, and J. Duffaux, “In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics In the parent vessel and effects of coil embolisation,” Neuroradiology, vol. 36, no. 7, pp. 530–536, 1994. View at Publisher · View at Google Scholar · View at Scopus
  113. T. M. Liou and S. N. Liou, “A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models,” Proceedings of the National Science Council, Republic of China. Part B, Life sciences, vol. 23, no. 4, pp. 133–148, 1999. View at Google Scholar · View at Scopus
  114. T. Satoh, K. Onoda, and S. Tsuchimoto, “Visualization of intraaneurysmal flow patterns with transluminal flow images of 3D MR angiograms in conjunction with aneurysmal configurations,” American Journal of Neuroradiology, vol. 24, no. 7, pp. 1436–1445, 2003. View at Google Scholar · View at Scopus
  115. H. Ujiie, H. Tachibana, O. Hiramatsu et al., “Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms,” Neurosurgery, vol. 45, no. 1, pp. 119–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. A. J. Ringer, D. K. Lopes, A. S. Boulos, L. R. Guterman, and L. N. Hopkins, “Current techniques for endovascular treatment of intracranial aneurysms,” Seminars in Cerebrovascular Diseases and Stroke, vol. 1, pp. 39–51, 2001. View at Google Scholar
  117. S. H. Kim, M. H. Han, I. K. Yu, S. H. Lee, and K. H. Chang, “Experimental model for creation of carotid artery aneurysms in dogs,” Journal of the Korean Radiological Society, vol. 35, pp. 703–707, 1996. View at Google Scholar
  118. K. Perktold, R. Peter, and M. Resch, “Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm,” Biorheology, vol. 26, no. 6, pp. 1011–1030, 1989. View at Google Scholar · View at Scopus
  119. K. Perktold and G. Rappitsch, “Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model,” Journal of Biomechanics, vol. 28, no. 7, pp. 845–856, 1995. View at Publisher · View at Google Scholar · View at Scopus
  120. D. A. Steinman, “Image-based computational fluid dynamics modeling in realistic arterial geometries,” Annals of Biomedical Engineering, vol. 30, no. 4, pp. 483–497, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. G. R. Stuhne and D. A. Steinman, “Finite-element modeling of the hemodynamics of stented aneurysms,” Journal of Biomechanical Engineering, vol. 126, no. 3, pp. 382–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Dempere-Marco, E. Oubel, M. Castro, C. Putman, A. Frangi, and J. Cebral, “CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms,” Lecture Notes in Computer Science, vol. 4191, pp. 438–445, 2006. View at Google Scholar
  123. E. Oubel, M. De Craene, C. M. Putman, J. R. Cebral, and A. F. Frangi, “Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns,” in Medical Imaging, vol. 6511 of Proceedings of SPIE, p. 65112A, San Diego, Calif, USA, February 2007.
  124. K. Takizawa, C. Moorman, S. Wright et al., “Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms,” International Journal for Numerical Methods in Fluids, vol. 65, no. 1–3, pp. 308–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. C. A. Figueroa, S. Baek, I. E. Vignon-Clementel, J. D. Humphrey, and C. A. Taylor, “Towards patient-specific modeling I: hemodynamics in a growing aneurysm,” in Medical Imaging, vol. 6143 of Proceedings of SPIE, p. 61430K, San Diego, Calif, USA, 2006.
  126. R. L. Gleason and J. D. Humphrey, “A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover,” Journal of Vascular Research, vol. 41, no. 4, pp. 352–363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. R. L. Gleason and J. D. Humphrey, “Effects of a sustained extension on arterial growth and remodeling: a theoretical study,” Journal of Biomechanics, vol. 38, no. 6, pp. 1255–1261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Baek, C. A. Figueroa, C. A. Taylor, and J. D. Humphrey, “Towards patient-specific modeling II. Biomechanics of a growing aneurysm,” in Medical Imaging, vol. 6143 of Proceedings of SPIE, p. 61432C, San Diego, Calif, USA, 2006.
  129. R. A. Peattie, T. J. Riehle, and E. I. Bluth, “Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses,” Journal of Biomechanical Engineering, vol. 126, no. 4, pp. 438–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Prakash and C. R. Ethier, “Requirements for mesh resolution in 3D computational hemodynamics,” Journal of Biomechanical Engineering, vol. 123, no. 2, pp. 134–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. A. V. Salsac, S. R. Sparks, and J. C. Lasheras, “Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms,” Annals of Vascular Surgery, vol. 18, no. 1, pp. 14–21, 2004. View at Publisher · View at Google Scholar · View at Scopus