Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 948781, 13 pages
http://dx.doi.org/10.1155/2012/948781
Research Article

A Study of Mechanical Optimization Strategy for Cardiac Resynchronization Therapy Based on an Electromechanical Model

1Department of Anesthesiology, General Hospital of Guangzhou Military Command, Guangzhou 510010, China
2Key Lab of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
3The School of Information Technology & Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Received 21 June 2012; Accepted 10 September 2012

Academic Editor: Dingchang Zheng

Copyright © 2012 Jianhong Dou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Garrigue, P. Bordachar, S. Reuter, P. Jaïs, M. Haïssaguerre, and J. Clementy, “Comparison of permanent left ventricular and biventricular pacing in patients with heart failure and chronic atrial fibrillation: a prospective hemodynamic study,” Cardiac Electrophysiology Review, vol. 7, no. 4, pp. 315–324, 2003. View at Google Scholar · View at Scopus
  2. F. A. McAlister, J. A. Ezekowitz, N. Wiebe et al., “Systematic review: cardiac resynchronization in patients with symptomatic heart failure,” Annals of Internal Medicine, vol. 141, no. 5, pp. 381–390, 2004. View at Google Scholar · View at Scopus
  3. J. Kron, J. M. Aranda Jr., W. M. Miles et al., “Benefit of cardiac resynchronization in elderly patients: results from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE) and Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE-ICD) trials,” Journal of Interventional Cardiac Electrophysiology, vol. 25, no. 2, pp. 91–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. St John Sutton, T. Plappert, K. E. Hilpisch, W. T. Abraham, D. L. Hayes, and E. Chinchoy, “Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE),” Circulation, vol. 113, no. 2, pp. 266–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. F. Bakker, H. W. Meijburg, J. W. de Vries et al., “Biventricular pacing in end-stage heart failure improves functional capacity and left ventricular function,” Journal of Interventional Cardiac Electrophysiology, vol. 4, no. 2, pp. 395–404, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. S. Nelson, R. D. Berger, B. J. Fetics et al., “Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block,” Circulation, vol. 102, no. 25, pp. 3053–3059, 2000. View at Google Scholar · View at Scopus
  7. N. A. Marsan, M. M. Henneman, J. Chen et al., “Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 166–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Birnie and A. S. L. Tang, “The problem of non-response to cardiac resynchronization therapy,” Current Opinion in Cardiology, vol. 21, no. 1, pp. 20–26, 2006. View at Google Scholar · View at Scopus
  9. D. A. Kass, “Ventricular resynchronization: pathophysiology and identification of responders,” Reviews in Cardiovascular Medicine, vol. 4, supplement, no. 2, pp. S3–S13, 2003. View at Google Scholar · View at Scopus
  10. M. E. Spotnitz, M. E. Richmond, T. A. Quinn et al., “Relation of QRS shortening to cardiac output during temporary resynchronization therapy after cardiac surgery,” ASAIO Journal, vol. 56, no. 5, pp. 434–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Jones, T. Svinarich, A. Rubin et al., “Optimal atrioventricular delay in CRT patients can be approximated using surface electrocardiography and device electrograms,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 11, pp. 1226–1232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Yu, E. Chau, J. E. Sanderson et al., “Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure,” Circulation, vol. 105, no. 4, pp. 438–445, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Mishiro, T. Oki, H. Yamada, T. Wakatsuki, and S. Ito, “Evaluation of left ventricular contraction abnormalities in patients with dilated cardiomyopathy with the use of pulsed tissue doppler imaging,” Journal of the American Society of Echocardiography, vol. 12, no. 11, pp. 913–920, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Leclercq, F. X. Hager, J. C. Macia, C. J. Mariottini, J. L. Pasquié, and R. Grolleau, “Left ventricular lead insertion using a modified transseptal catheterization technique: a totally endocardial approach for permanent biventricular pacing in end-stage heart failure,” Pacing and Clinical Electrophysiology, vol. 22, no. 11, pp. 1570–1575, 1999. View at Google Scholar · View at Scopus
  15. C. Leclercq, O. Faris, R. Tunin et al., “Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block,” Circulation, vol. 106, no. 14, pp. 1760–1763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Reumann, D. Farina, R. Miri, S. Lurz, B. Osswald, and O. Dössel, “Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy,” Medical and Biological Engineering and Computing, vol. 45, no. 9, pp. 845–854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. “Use of body-surface potential mapping and computer model simulations for optimal programming cardiac resynchronization therapy devices,” in Computers in Cardiology, R. Mohindra, J. L. Sapp, J. C. Clements, and B. M. Horáček, Eds., Durham, NC, USA, 2007.
  18. G. Lecoq, C. Leclercq, E. Leray et al., “Clinical and electrocardiographic predictors of a positive response to cardiac resynchronization therapy in advanced heart failure,” European Heart Journal, vol. 26, no. 11, pp. 1094–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. D. Spragg, C. Leclercq, M. Loghmani et al., “Regional alterations in protein expression in the dyssynchronous failing heart,” Circulation, vol. 108, no. 8, pp. 929–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Dou, L. Xia, Y. Zhang et al., “Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model,” Physics in Medicine and Biology, vol. 54, no. 2, pp. 353–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O'Rourke, “Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies,” Circulation Research, vol. 84, pp. 571–586, 1999. View at Google Scholar
  22. R. C. P. Kerekhoffs, O. P. Faris, P. H. M. Bovendeerd et al., “Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments,” American Journal of Physiology, vol. 289, no. 5, pp. H1889–H1897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. P. Kerckhoffs, M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch, “Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation,” Annals of Biomedical Engineering, vol. 35, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. P. Kerckhoffs, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, and T. Arts, “Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart,” Journal of Engineering Mathematics, vol. 47, no. 3-4, pp. 201–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Suffoletto, K. Dohi, M. Cannesson, S. Saba, and J. Gorcsan III, “Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy,” Circulation, vol. 113, no. 7, pp. 960–968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. C. Bilchick, V. Dimaano, K. C. Wu et al., “Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy,” Cardiovascular Imaging, vol. 1, no. 5, pp. 561–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Byrne, R. H. Helm, S. Daya et al., “Diminished left ventricular dyssynchrony and impact of resynchronization in failing hearts with right versus left bundle branch block,” Journal of the American College of Cardiology, vol. 50, no. 15, pp. 1484–1490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Zhang, L. Xia, Y. Gong, L. Chen, G. Hou, and M. Tang, “Parallel solution in simulation of cardiac excitation anisotropic propagation,” in Proceedings of the 4th International Conference on Functional Imaging and Modeling of the Heart (FIMH '07), pp. 170–179, June 2007. View at Scopus
  29. Z. I. Whinnett, J. E. R. Davies, K. Willson et al., “Determination of optimal atrioventricular delay for cardiac resynchronization therapy using acute non-invasive blood pressure,” Europace, vol. 8, no. 5, pp. 358–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Rossillo, A. Verma, E. B. Saad et al., “Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up,” Journal of Cardiovascular Electrophysiology, vol. 15, no. 10, pp. 1120–1125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Peichl, J. Kautzner, R. Čihák, and J. Bytešník, “The spectrum of inter- and intraventricular conduction abnormalities in patients eligible for cardiac resynchronization therapy,” Pacing and Clinical Electrophysiology, vol. 27, no. 8, pp. 1105–1112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. L. M. Rodriguez, C. Timmermans, A. Nabar, G. Beatty, and H. J. J. Wellens, “Variable patterns of septal activation in patients with left bundle branch block and heart failure,” Journal of Cardiovascular Electrophysiology, vol. 14, no. 2, pp. 135–141, 2003. View at Google Scholar · View at Scopus
  33. R. H. Helm, M. Byrne, P. A. Helm et al., “Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization,” Circulation, vol. 115, no. 8, pp. 953–961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Boriani, C. P. Müller, K. H. Seidl et al., “Randomized comparison of simultaneous biventricular stimulation versus optimized interventricular delay in cardiac resynchronization therapy. The Resynchronization for the HemodYnamic Treatment for Heart Failure Management II implantable cardioverter defibrillator (RHYTHM II ICD) study,” American Heart Journal, vol. 151, no. 5, pp. 1050–1058, 2006. View at Google Scholar · View at Scopus
  35. H. Kanzaki, R. Bazaz, D. Schwartzman, K. Dohi, L. E. Sade, and J. Gorcsan III, “A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping,” Journal of the American College of Cardiology, vol. 44, no. 8, pp. 1619–1625, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Ansalone, P. Giannantoni, R. Ricci, P. Trambaiolo, F. Fedele, and M. Santini, “Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing,” Journal of the American College of Cardiology, vol. 39, no. 3, pp. 489–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Bertini, M. Ziacchi, M. Biffi et al., “Interventricular delay interval optimization in cardiac resynchronization therapy guided by echocardiography versus guided by electrocardiographic QRS interval width,” American Journal of Cardiology, vol. 102, no. 10, pp. 1373–1377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Vidal, D. Tamborero, L. Mont et al., “Electrocardiographic optimization of interventricular delay in cardiac resynchronization therapy: a simple method to optimize the device,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 12, pp. 1252–1257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. A. Taylor and C. A. Figueroa, “Patient-specific modeling of cardiovascular mechanics,” Annual Review of Biomedical Engineering, vol. 11, pp. 109–134, 2009. View at Google Scholar