Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 190571, 12 pages
http://dx.doi.org/10.1155/2013/190571
Research Article

Regularized Multidirections and Multiscales Anisotropic Diffusion for Sinogram Restoration of Low-Dosed Computed Tomography

School of Computer Science, Sichuan Normal University, Chengdu, Sichuan 610101, China

Received 25 July 2013; Accepted 23 August 2013

Academic Editor: Reinoud Maex

Copyright © 2013 Zhiwu Liao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Catté, P. Lions, J. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193, 1992. View at Google Scholar · View at Scopus
  3. V. B. S. Prasath and A. Singh, “Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising,” Journal of Applied Mathematics, vol. 2010, Article ID 763847, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. S. Chen, P. C. Yuen, and X. H. Xie, “Kernel machine-based rank-lifting regularized discriminant analysis method for face recognition,” Neurocomputing, vol. 74, no. 17, pp. 2953–2960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. W. S. Chen, P. C. Yuen, J. Huang, and D. Dai, “Kernel machine-based one-parameter regularized fisher discriminant method for face recognition,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 35, no. 4, pp. 659–669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ceccarelli, V. De Simone, and A. Murli, “Well-posed anisotropic diffusion for image denoising,” IEE Proceedings: Vision, Image and Signal Processing, vol. 149, no. 4, pp. 244–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Zhang, Y. M. Yoo, L. M. Koh, and Y. Kim, “Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction,” IEEE Transactions on Medical Imaging, vol. 26, no. 2, pp. 200–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Weickert, “Coherence-enhancing diffusion filtering,” International Journal of Computer Vision, vol. 31, no. 2-3, pp. 111–127, 1999. View at Google Scholar · View at Scopus
  9. J. Weickert and H. Scharr, “A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance,” Journal of Visual Communication and Image Representation, vol. 13, no. 1-2, pp. 103–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Sochen, G. Gilboa, and Y. Y. Zeevi, “Color image enhancement by a forward and backward adaptive Beltrami flow,” in Proceedings of the 2nd International Workshop on Algebraic Frames for the Perception-Action Cycle (AFPAC '00), G. Sommer and Y. Y. Zeevi, Eds., vol. 1888 of LNCS, pp. 319–328, Springer, 2000.
  11. F. Liu and J. Liu, “Anisotropic diffusion for image denoising based on diffusion tensors,” Journal of Visual Communication and Image Representation, vol. 23, no. 3, pp. 516–521, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Wakeford, “The risk of childhood leukaemia following exposure to ionising radiation-a review,” Journal of Radiological Protection, vol. 33, no. 1, pp. 1–25, 2013. View at Google Scholar
  13. D. J. Brenner and E. J. Hall, “Computed tomography-an increasing source of radiation exposure,” New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Brisse, J. Brenot, N. Pierrat et al., “The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: experimental assessment with pediatric phantoms,” Physics in Medicine and Biology, vol. 54, no. 7, pp. 1871–1892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Weidemann, G. Stamm, M. Galanski, and M. Keberle, “Comparison of the image quality of various fixed and dose modulated protocols for soft tissue neck CT on a GE Lightspeed scanner,” European Journal of Radiology, vol. 69, no. 3, pp. 473–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Qi, J. Li, and X. Du, “Method for automatic tube current selection for obtaining a consistent image quality and dose optimization in a cardiac multidetector CT,” Korean Journal of Radiology, vol. 10, no. 6, pp. 568–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Liu, J. Ma, Y. Fan, and Z. Liang:, “Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction,” Physics in Medicine and Biology, vol. 57, no. 23, pp. 7923–7956, 2012. View at Google Scholar
  18. Y. Chen, W. Chen, X. Yin et al., “Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods,” European Journal of Radiology, vol. 80, no. 2, pp. e42–e49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 10, pp. 1272–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. K. Kalra, M. M. Maher, M. A. Blake et al., “Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters,” Radiology, vol. 232, no. 3, pp. 791–797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Li and W. Zhao, “On 1/f noise,” Mathematical Problems in Engineering, vol. 2012, Article ID 673648, 23 pages, 2012. View at Publisher · View at Google Scholar
  22. M. Li, “Approximating ideal filters by systems of fractional order,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 365054, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Manduca, L. Yu, J. D. Trzasko et al., “Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT,” Medical Physics, vol. 36, no. 11, pp. 4911–4919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Mail, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “The influence of bowtie filtration on cone-beam CT image quality,” Medical Physics, vol. 36, no. 1, pp. 22–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Liao, S. Hu, D. Sun, and W. Chen, “A numerical method for preserving curve edges in nonlinear anisotropic smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 186507, 14 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wang, H. Lu, J. Wen, and Z. Liang, “Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1022–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Xu and B. M. Tsui, “Electronic noise modeling in statistical iterative reconstruction,” IEEE Transactions on Image Processing, vol. 18, no. 6, pp. 1228–1238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Liao, S. Hu, D. Sun, and W. Chen, “Enclosed laplacian operator of nonlinear anisotropic diffusion to preserve singularities and delete isolated points in image smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 749456, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus