Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 267360, 7 pages
http://dx.doi.org/10.1155/2013/267360
Research Article

Modeling the Antioxidant Capacity of Red Wine from Different Production Years and Sources under Censoring

1Technical University of Cluj-Napoca, Department of Chemistry, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
2University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
3“Iuliu Haţieganu” University of Medicine and Pharmacy, Department of Medical Informatics and Biostatistics, 6 Louis Pasteur, 400349 Cluj-Napoca, Romania

Received 1 May 2013; Accepted 2 September 2013

Academic Editor: Ricardo Femat

Copyright © 2013 Lorentz Jäntschi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. P. A. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. D. Lele, “Free radicals and antioxidants in human health: current status and future prospects,” Journal of Association of Physicians of India, vol. 52, pp. 794–804, 2004. View at Google Scholar · View at Scopus
  2. B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging,” The Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 7915–7922, 1993. View at Publisher · View at Google Scholar
  3. B. Poljšak, R. G. Dahmane, and A. Godić, “Intrinsic skin aging: the role of oxidative stress,” Acta dermatovenerologica Alpina, Pannonica, et Adriatica Acta APA, vol. 21, no. 2, pp. 33–36, 2012. View at Google Scholar
  4. Y. J. Suzuki, R. H. Steinhorn, and M. T. Gladwin, “Antioxidant therapy for the treatment of pulmonary hypertension,” Antioxidants & Redox Signaling, vol. 18, no. 14, pp. 1723–1726, 2013. View at Publisher · View at Google Scholar
  5. D. S. Kania, C. T. Smith, C. L. Nash, J. D. Gonzalvo, A. Bittner, and B. M. Shepler, “Potential new treatments for diabetic kidney disease,” Medical Clinics of North America, vol. 97, no. 1, pp. 115–134, 2013. View at Publisher · View at Google Scholar
  6. A. S. Udupa, P. S. Nahar, S. H. Shah, M. J. Kshirsagar, and B. B. Ghongane, “Study of comparative effects of antioxidants on insulin sensitivity in type 2 diabetes mellitus,” Journal of Clinical and Diagnostic Research, vol. 6, no. 9, pp. 1469–1473, 2012. View at Google Scholar
  7. R. R. Somasagara, M. Hegde, K. K. Chiruvella, A. Musini, B. Choudhary, and S. C. Raghavan, “Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice,” PLoS ONE, vol. 7, no. 10, Article ID e47021, 2012. View at Google Scholar
  8. M. Iwasaki, P. Moynihan, M. C. Manz et al., “Dietary antioxidants and periodontal disease in community-based older Japanese: a 2-year follow-up study,” Public Health Nutrition, vol. 16, no. 2, pp. 330–338, 2013. View at Publisher · View at Google Scholar
  9. F. A. Tomás-Barberán and C. Andrés-Lacueva, “Polyphenols and health: current state and progress,” Journal of Agricultural and Food Chemistry, vol. 60, no. 36, pp. 8773–8775, 2012. View at Publisher · View at Google Scholar
  10. J. Yang and R. H. Liu, “The phenolic profiles and antioxidant activity in different types of tea,” International Journal of Food Science & Technology, vol. 48, no. 1, pp. 163–171, 2013. View at Publisher · View at Google Scholar
  11. D. Di Majo, M. Giammanco, M. La Guardia, E. Tripoli, S. Giammanco, and E. Finotti, “Flavanones in citrus fruit: structure-antioxidant activity relationships,” Food Research International, vol. 38, no. 10, pp. 1161–1166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Shin, “Correlation between antioxidant concentrations and activities of Yuja (Citrus junos Sieb ex Tanaka) and other citrus fruit,” Food Science and Biotechnology, vol. 21, no. 5, pp. 1477–1482, 2012. View at Publisher · View at Google Scholar
  13. A. Tseng and Y. Zhao, “Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing,” Food Chemistry, vol. 138, no. 1, pp. 356–365, 2013. View at Publisher · View at Google Scholar
  14. M. V. Eberhardt, C. Y. Lee, and R. H. Liu, “Antioxidant activity of fresh apples,” Nature, vol. 405, no. 6789, pp. 903–904, 2000. View at Google Scholar · View at Scopus
  15. A. T. Serra, J. Rocha, B. Sepodes et al., “Evaluation of cardiovascular protective effect of different apple varieties—correlation of response with composition,” Food Chemistry, vol. 135, no. 4, pp. 2378–2386, 2012. View at Publisher · View at Google Scholar
  16. B. A. Cevallos-Casals, D. Byrne, W. R. Okie, and L. Cisneros-Zevallos, “Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties,” Food Chemistry, vol. 96, no. 2, pp. 273–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. D. Ozsahin, Z. Gokce, O. Yilmaz, and O. A. Kirecci, “The fruit extract of three strawberry cultivars prevents lipid peroxidation and protects the unsaturated fatty acids in the Fenton reagent environment,” International Journal of Food Sciences and Nutrition, vol. 63, no. 3, pp. 353–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Kalt, C. F. Forney, A. Martin, and R. L. Prior, “Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits,” Journal of Agricultural and Food Chemistry, vol. 47, no. 11, pp. 4638–4644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Schmitz-Eiberger and M. M. Blanke, “Bioactive components in forced sweet cherry fruit (Prunus avium L.), antioxidative capacity and allergenic potential as dependent on cultivation under cover,” LWT—Food Science and Technology, vol. 46, no. 2, pp. 388–392, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L.-L. Zuo, Z.-Y. Wang, Z.-L. Fan, S.-Q. Tian, and J.-R. Liu, “Evaluation of antioxidant and antiproliferative properties of three actinidia (Actinidia kolomikta , Actinidia arguta, Actinidia chinensis) extracts in vitro,” International Journal of Molecular Sciences, vol. 13, no. 5, pp. 5506–5518, 2012. View at Publisher · View at Google Scholar
  21. K. Singletary, “Kiwifruit: overview of potential health benefits,” Nutrition Today, vol. 47, no. 3, pp. 133–147, 2012. View at Publisher · View at Google Scholar
  22. N. Miletić, B. Popović, O. Mitrović, and M. Kandić, “Phenolic content and antioxidant capacity of fruits of plum cv. ‘stanley’ (Prunus domestica L.) As influenced by maturity stage and on-tree ripening,” Australian Journal of Crop Science, vol. 6, no. 4, pp. 681–687, 2012. View at Google Scholar
  23. H. Şelale, H. O. Sgva, I. Celik, S. Doganlar, and A. Frary, “Water-soluble antioxidant potential of melon lines grown in Turkey,” International Journal of Food Properties, vol. 15, no. 1, pp. 145–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Heiras-Palazuelos, M. I. Ochoa-Lugo, R. Gutiérrez-Dorado et al., “Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars,” International Journal of Food Sciences and Nutrition, vol. 64, no. 1, pp. 69–76, 2013. View at Publisher · View at Google Scholar
  25. S. A. Arscott and S. A. Tanumihardjo, “Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 2, pp. 223–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Frary, M. A. Keçeli, B. Ökmen, H. Ö. Şigva, A. Yemenicioglu, and S. Doganlar, “Water-soluble antioxidant potential of Turkish pepper cultivars,” HortScience, vol. 43, no. 3, pp. 631–636, 2008. View at Google Scholar
  27. N. Deepa, C. Kaur, B. George, B. Singh, and H. C. Kapoor, “Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity,” LWT—Food Science and Technology, vol. 40, no. 1, pp. 121–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Cao, E. Sofic, and R. L. Prior, “Antioxidant capacity of tea and common vegetables,” Journal of Agricultural and Food Chemistry, vol. 44, no. 11, pp. 3426–3431, 1996. View at Publisher · View at Google Scholar
  29. J. Lachman, M. Šulc, K. Faitová, and V. Pivec, “Major factors influencing antioxidant contents and antioxidant activity in grapes and wines,” International Journal of Wine Research, vol. 1, no. 1, pp. 101–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Landrault, P. Poucheret, P. Ravel, F. Gasc, G. Cros, and P.-L. Teissedre, “Antioxidant capacities and phenolics levels of French wines from different varieties and vintages,” Journal of Agricultural and Food Chemistry, vol. 49, no. 7, pp. 3341–3348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. N. Mitić, J.-M. Souquet, M. V. Obradović, and S. S. Mitić, “Phytochemical profiles and antioxidant activities of Serbian table and wine grapes,” Food Science and Biotechnology, vol. 21, no. 6, pp. 1619–1626, 2012. View at Publisher · View at Google Scholar
  32. M. Lutz, Y. Cajas, and C. Henríquez, “Phenolics content and antioxidant capacity of Chilean grapes cv. País and Cabernet Sauvignon,” CyTA—Journal of Food, vol. 10, no. 4, pp. 251–257, 2012. View at Publisher · View at Google Scholar
  33. B. Jiang and Z.-W. Zhang, “Comparison on phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China,” Molecules, vol. 17, no. 8, pp. 8804–8821, 2012. View at Publisher · View at Google Scholar
  34. S. Kostadinović, A. Wilkens, M. Stefova et al., “Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: effect of variety and enological practices,” Food Chemistry, vol. 135, no. 4, pp. 3003–3009, 2012. View at Publisher · View at Google Scholar
  35. Y. J. Yoo, P. D. Prenzler, A. J. Saliba, and D. Ryan, “Assessment of some Australian red wines for price, phenolic content, antioxidant activity, and vintage in relation to functional food prospects,” Journal of Food Science, vol. 76, no. 9, pp. C1355–C1364, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. D. Hosu, C. Cimpoiu, N. Pop, V. Miclauş, S. D. Bolboacă, and L. Jäntschi, “The analysis of different factors affecting the red wines antioxidant content,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 39, no. 1, pp. 159–164, 2011. View at Google Scholar
  37. D. Granato, F. C. Uchida Katayama, and I. A. de Castro, “Characterization of red wines from South America based on sensory properties and antioxidant activity,” Journal of the Science of Food and Agriculture, vol. 92, no. 3, pp. 526–533, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. C.-I. Bunea, N. Pop, A. C. Babeş, C. Matea, F. V. Dulf, and A. Bunea, “Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems,” Chemistry Central Journal, vol. 6, no. 1, article 66, 2012. View at Publisher · View at Google Scholar
  39. J. Y. Lee and E. J. Kwak, “Physicochemical characteristics and antioxidant activities of grape yakju,” Food Science and Biotechnology, vol. 20, no. 1, pp. 175–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. I. G. Roussis, I. Lambropoulos, P. Tzimas et al., “Antioxidant activities of some Greek wines and wine phenolic extracts,” Journal of Food Composition and Analysis, vol. 21, no. 8, pp. 614–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. F. J. Gonalves and A. M. Jordao, “Changes in antioxidant activity and the proanthocyanidin fraction of red wine aged in contact with Portuguese (Quercus Pyrenaica Willd.) and American (Quercus Alba L.) oak wood chips,” Italian Journal of Food Science, vol. 21, no. 1, pp. 51–64, 2009. View at Google Scholar · View at Scopus
  42. A. D. Hosu, C. V. Cimpoiu, V. Miclauş, and L. Jäntschi, “Antioxidant content of three different varieties of wine grapes,” Biotechnology & Biotechnological Equipment, vol. 25, no. 1, pp. 2217–2221, 2011. View at Publisher · View at Google Scholar
  43. M. J. Aguirre, M. Isaacs, B. Matsuhiro, L. Mendoza, L. S. Santos, and S. Torres, “Anthocyanin composition in aged Chilean Cabernet Sauvignon red wines,” Food Chemistry, vol. 129, no. 2, pp. 514–519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Finotti and D. Di Majo, “Influence of solvents on the antioxidant property of flavonoids,” Food/Nahrung, vol. 47, no. 3, pp. 186–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Arnous, D. P. Makris, and P. Kefalas, “Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece,” Journal of Food Composition and Analysis, vol. 15, no. 6, pp. 655–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. A. M. Jordão, S. Simões, A. C. Correia, and F. J. Gonçalves, “Antioxidant activity evolution during Portuguese red wine vinification and their relation with the proanthocyanidin and anthocyanin composition,” Journal of Food Processing and Preservation, vol. 36, no. 4, pp. 298–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Radovanović and A. Radovanović, “Free radical scavenging activity and anthocyanin profile of Cabernet Sauvignon wines from the Balkan region,” Molecules, vol. 15, no. 6, pp. 4213–4226, 2010. View at Publisher · View at Google Scholar · View at Scopus