Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 293128, 18 pages
http://dx.doi.org/10.1155/2013/293128
Research Article

Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties

1Department of Mechanical Engineering, Universidad de Chile, 8370448 Santiago, Chile
2Institute of Neurosurgery Dr. Asenjo, 7500691 Santiago, Chile

Received 29 May 2013; Revised 31 July 2013; Accepted 1 August 2013

Academic Editor: Nestor V. Torres

Copyright © 2013 Alvaro Valencia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Holzapfel and R. W. Ogden, Mechanics of Biological Tissue, Springer, Berlin, Germany, 2006.
  2. D. J. Macdonald, H. M. Finlay, and P. B. Canham, “Directional wall strength in saccular brain aneurysms from polarized light microscopy,” Annals of Biomedical Engineering, vol. 28, no. 5, pp. 533–542, 2000. View at Google Scholar · View at Scopus
  3. P. Seshaiyer, F. P. K. Hsu, A. D. Shah, S. K. Kyriacou, and J. D. Humphrey, “Multiaxial mechanical behavior of human saccular aneurysms,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 4, no. 3, pp. 281–289, 2001. View at Google Scholar
  4. S. Scott, G. G. Ferguson, and M. R. Roach, “Comparison of the elastic properties of human intracranial arteries and aneurysms,” Canadian Journal of Physiology and Pharmacology, vol. 50, no. 4, pp. 328–332, 1972. View at Google Scholar · View at Scopus
  5. B. Tóth, G. Raffai, and I. Bojtár, “Analysis of the mechanical parameters of human brain aneurysm,” Acta of Bioengineering and Biomechanics, vol. 7, pp. 3–23, 2005. View at Google Scholar
  6. K. L. Monson, W. Goldsmith, N. M. Barbaro, and G. T. Manley, “Axial mechanical properties of fresh human cerebral blood vessels,” Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 288–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ujiie, H. Tachibana, O. Hiramatsu et al., “Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms,” Neurosurgery, vol. 45, no. 1, pp. 119–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Chatziprodromou, A. Tricoli, D. Poulikakos, and Y. Ventikos, “Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model,” Journal of Biomechanics, vol. 40, no. 2, pp. 412–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Pentimalli, A. Modesti, A. Vignati et al., “Role of apoptosis in intracranial aneurysm rupture,” Journal of Neurosurgery, vol. 101, no. 6, pp. 1018–1025, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape,” International Journal for Numerical Methods in Fluids, vol. 54, no. 6–8, pp. 995–1009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms,” International Journal for Numerical Methods in Biomedical Engineering, vol. 26, no. 3-4, pp. 336–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Valencia, D. Ledermann, R. Rivera, E. Bravo, and M. Galvez, “Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms,” International Journal for Numerical Methods in Fluids, vol. 58, no. 10, pp. 1081–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Contente, Caracterización de la tenso-deformacion de muestras de aneurismas cerebrales humanos [M.S. thesis], Department of Mechanical Engineering, Universidad de Chile, 2012 (Spanish), pp. 25–66, http://tesis.uchile.cl/handle/2250/111468.
  14. ADINA, Theory and Modeling Guide, Volume I, ADINA, Watertown, Mass, USA, 2011.
  15. V. Costalat and M. Sanchez, “Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project),” Journal of Biomechanics, vol. 44, no. 15, pp. 2685–2691, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Valencia, H. Figueroa, R. Rivera, and E. Bravo, “Sensitivity analysis of fluid structure interaction in a cerebral aneurysm model to wall thickness and elastic modulus,” Advances and Applications in Fluid Mechanics, vol. 12, pp. 49–66, 2012. View at Google Scholar
  17. A. Valencia, H. Morales, R. Rivera, E. Bravo, and M. Galvez, “Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index,” Medical Engineering and Physics, vol. 30, no. 3, pp. 329–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Valencia, M. Rojo, R. Rivera, and E. Bravo, “Sensitivity analysis of computational structural dynamics in a cerebral aneurysm model to wall thickness and model,” Journal of Mechanics in Medicine and Biology, vol. 12, Article ID 1250054, 13 pages, 2012. View at Google Scholar