Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 345968, 11 pages
http://dx.doi.org/10.1155/2013/345968
Research Article

Ultrasound Common Carotid Artery Segmentation Based on Active Shape Model

1State Key Laboratory for Multispectral Information Processing Technologies, Institute for Pattern Recognition and Artificial Intelligence (IPRAI), Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
2Department of Biomedical Engineering, College of Life Science and Technology, Image Processing and Intelligence Control Key Laboratory of Education of Ministry of China, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
3Biomedical Instrument Institute, Med-X Research Institute, Shanghai Jiaotong University, Shanghai 200030, China

Received 20 December 2012; Revised 29 January 2013; Accepted 31 January 2013

Academic Editor: Peng Feng

Copyright © 2013 Xin Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. F. Groeneveld, K. I. Proper, A. J. van der Beek, and W. van Mechelen, “Sustained body weight reduction by an individual-based lifestyle intervention for workers in the construction industry at risk for cardiovascular disease: results of a randomized controlled trial,” Preventive Medicine, vol. 51, no. 3-4, pp. 240–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Warlow, “MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis,” The Lancet, vol. 337, no. 8752, pp. 1235–1243, 1991. View at Publisher · View at Google Scholar
  3. A. Fenster, G. Parraga, A. Landry, B. Chiu, M. Egger, and J. D. Spence, “3DUS imaging of the carotid arteries,” in Advances in Diagnostic and Therapeutic Ultrasound Imaging, pp. 67–92, Artech House, 1st edition, 2008. View at Google Scholar
  4. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. P. N. T. Wells, “Current status and future technical advances of ultrasonic imaging,” IEEE Engineering in Medicine and Biology Magazine, vol. 19, no. 5, pp. 14–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. D. Ainsworth, C. C. Blake, A. Tamayo, V. Beletsky, A. Fenster, and J. D. Spence, “3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies,” Stroke, vol. 36, no. 9, pp. 1904–1909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. S. Hatsukami, B. D. Thackray, J. F. Primozich et al., “Echolucent regions in carotid plaque: preliminary analysis comparing three-dimensional histologic reconstructions to sonographic findings,” Ultrasound in Medicine and Biology, vol. 20, no. 8, pp. 743–749, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Schminke, L. Motsch, B. Griewing, M. Gaull, and C. Kessler, “Three-dimensional power-mode ultrasound for quantification of the progression of carotid artery atherosclerosis,” Journal of Neurology, vol. 247, no. 2, pp. 106–111, 2000. View at Google Scholar · View at Scopus
  9. W. Steinke and M. Hennerici, “Three-dimensional ultrasound imaging of carotid artery plaques,” Journal of Cardiovascular Technology, vol. 8, no. 1, pp. 15–22, 1989. View at Google Scholar · View at Scopus
  10. A. Troyer, D. Saloner, X. M. Pan, P. Velez, and J. H. Rapp, “Major carotid plaque surface irregularities correlate with neurologic symptoms,” Journal of Vascular Surgery, vol. 35, no. 4, pp. 741–747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Destrempes, J. Meunier, M. F. Giroux, G. Soulez, and G. Cloutier, “Segmentation in ultrasonic B-mode images of carotid arteries using mixture of Nakagami distributions and stochastic optimization,” IEEE Transactions on Medical Imaging, vol. 28, pp. 215–229, 2009. View at Publisher · View at Google Scholar
  12. Q. Liang, I. Wendelhag, J. Wikstrand, and T. Gustavsson, “A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images,” IEEE Transactions on Medical Imaging, vol. 19, no. 2, pp. 127–142, 2000. View at Google Scholar · View at Scopus
  13. C. P. Loizou, C. S. Pattichis, M. Pantziaris, T. Tyllis, and A. Nicolaides, “Snakes based segmentation of the common carotid artery intima media,” Medical and Biological Engineering and Computing, vol. 45, no. 1, pp. 35–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Molinari, K. M. Meiburger, G. Zeng, A. Nicolaides, and J. S. Suri, “CAUDLES-EF: carotid automated ultrasound double line extraction system using edge flow,” Journal of Digital Imaging, vol. 24, no. 6, pp. 1059–1077, 2012. View at Publisher · View at Google Scholar
  15. R. Rocha, A. Campilho, J. Silva, E. Azevedo, and R. Santos, “Segmentation of ultrasound images of the carotid using RANSAC and cubic splines,” Computer Methods and Programs in Biomedicine, vol. 101, no. 1, pp. 94–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Bots, A. W. Hoes, P. J. Koudstaal, A. Hofman, and D. E. Grobbee, “Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study,” Circulation, vol. 96, no. 5, pp. 1432–1437, 1997. View at Google Scholar · View at Scopus
  17. J. D. Spence, “Technology insight: ultrasound measurement of carotid plaque—patient management, genetic research, and therapy evaluation,” Nature Clinical Practice Neurology, vol. 2, no. 11, pp. 611–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Egger, J. D. Spence, A. Fenster, and G. Parraga, “Validation of 3D ultrasound vessel wall volume: an imaging phenotype of carotid atherosclerosis,” Ultrasound in Medicine and Biology, vol. 33, no. 6, pp. 905–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Krasinski, B. Chiu, J. D. Spence, A. Fenster, and G. Parraga, “Three-dimensional ultrasound quantification of intensive statin treatment of carotid atherosclerosis,” Ultrasound in Medicine and Biology, vol. 35, no. 11, pp. 1763–1772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Mao, J. Gill, D. Downey, and A. Fenster, “Segmentation of carotid artery in ultrasound images: method development and evaluation technique,” Medical Physics, vol. 27, no. 8, pp. 1961–1970, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Abolmaesumi, M. Sirouspour, and S. Salcudean, “Real-time extraction of carotid artery contours from ultrasound images,” in Proceedings of the 13th IEEE Sympoisum on Computer-Based Medical Systems (CBMS '00), pp. 181–186, June 2000. View at Scopus
  22. A. Zahalka and A. Fenster, “An automated segmentation method for three-dimensional carotid ultrasound images,” Physics in Medicine and Biology, vol. 46, no. 4, pp. 1321–1342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Li, Z. Wang, H. Lu, and Z. Liang, “Automated segmentation method for the 3D ultrasound carotid image based on geometrically deformable model with automatic merge function,” in Medical Imaging, vol. 4684 of Proceedings of the SPIE, pp. 1458–1463, 2002. View at Publisher · View at Google Scholar
  24. J. K. Balasundaram and R. S. D. W. Banu, “A non-invasive study of alterations of the carotid artery with age using ultrasound images,” Medical and Biological Engineering and Computing, vol. 44, no. 9, pp. 767–772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Lou and M. Ding, “Principle and approach of boundary extraction based on particle motion in quantum mechanics,” Optical Engineering, vol. 46, no. 2, Article ID 027005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Cardinal, G. Soulez, J. Tardif, J. Meunier, and G. Cloutier, “Fast-marching segmentation of three-dimensional intravascular ultrasound images: a pre- and post-intervention study,” Medical Physics, vol. 37, no. 7, pp. 3633–3647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Yang, M. Ding, L. Lou, M. Yuchi, W. Qiu, and Y. Sun, “Common carotid artery lumen segmentation in b-mode ultrasound transverse view images,” International Journal of Image, Graphics and Signal Processing, vol. 3, no. 5, pp. 15–21, 2011. View at Publisher · View at Google Scholar
  28. E. Ukwatta, J. Awad, A. D. Ward et al., “Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method,” Medical Physics, vol. 38, no. 5, pp. 2479–2493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Abdel-Dayem and M. El-Sakka, “Carotid artery ultrasound image segmentation using Fuzzy region growing,” in Image Analysis and Recognition, M. Kamel and A. Campilho, Eds., vol. 3656, pp. 869–878, Springer, Berlin, Germany, 2005. View at Google Scholar
  30. A. Abdel-Dayem and M. El-Sakka, “Diffusion-based detection of carotid artery lumen from ultrasound images,” in Image Analysis and Recognition, M. Kamel and A. Campilho, Eds., vol. 5627, pp. 782–791, Springer, Berlin, Germany, 2009. View at Google Scholar
  31. A. K. Hamou and M. R. El-Sakka, “A novel segmentation technique for carotid ultrasound images,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), pp. III521–III524, May 2004. View at Scopus
  32. S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound in Medicine and Biology, vol. 33, no. 12, pp. 1918–1932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Schwartz, A. Valente, E. A. Sprague, J. Kelley, and R. Nerem, “The pathogenesis of atherosclerosis: an overview,” Clinical Cardiology, vol. 14, no. 2, pp. 1–16, 1991. View at Google Scholar · View at Scopus
  34. A. V. Finn, M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani, “Concept of vulnerable/unstable plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 7, pp. 1282–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Layland, A. Wilson, I. Lim, and R. Whitbourn, “Virtual histology: a window to the heart of atherosclerosis,” Heart Lung and Circulation, vol. 20, no. 10, pp. 615–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Tavora, N. Cresswell, L. Li, D. Fowler, and A. Burke, “Frequency of acute plaque ruptures and thin cap atheromas at sites of maximal stenosis,” Arquivos Brasileiros de Cardiologia, vol. 94, no. 2, pp. 143–159, 2010. View at Google Scholar · View at Scopus
  37. I. M. Graf, J. Su, D. Yeager, J. Amirian, R. Smalling, and S. Emelianov, “Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing, vol. 7899 of Proceedings of the SPIE, San Francisco, Calif, USA. View at Publisher · View at Google Scholar
  38. G. Parraga, A. A. House, A. Krasinski, J. D. Spence, and A. Fenster, “Volumetric evaluation of carotid atherosclerosis using 3-dimensional ultrasonic imaging,” in Ultrasound and Carotid Bifurcation Atherosclerosis, pp. 263–277, Springer, New York, NY, USA, 1st edition, 2012. View at Google Scholar
  39. D. N. Buchanan, T. Lindenmaier, S. McKay et al., “The relationship of carotid three-dimensional ultrasound vessel wall volume with age and sex: comparison to carotid intima-media thickness,” Ultrasound in Medicine & Biology, vol. 38, no. 7, pp. 1145–1153, 2012. View at Publisher · View at Google Scholar
  40. J. Awad, A. Krasinski, G. Parraga, and A. Fenster, “Texture analysis of carotid artery atherosclerosis from three-dimensional ultrasound images,” Medical Physics, vol. 37, no. 4, pp. 1382–1391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-dimensional ultrasound imaging,” Physics in Medicine and Biology, vol. 46, no. 5, pp. R67–R99, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Chiu, M. Egger, J. D. Spence, G. Parraga, and A. Fenster, “Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images,” Medical Physics, vol. 35, no. 8, pp. 3691–3700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. M. Pizer, E. P. Amburn, J. D. Austin et al., “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987. View at Google Scholar · View at Scopus
  44. E. Ukwatta, J. Awad, A. Ward et al., “Segmentation of the lumen and media-adventitia boundaries of the common carotid artery from 3D ultrasound images,” in Medical Imaging: Computer-Aided Diagnosis, vol. 7963 of Proceedings of the SPIE, Lake Buena Vista, Fla, USA, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Transactions on Image Processing, vol. 11, no. 11, pp. 1260–1270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models-their training and application,” Computer Vision and Image Understanding, vol. 61, pp. 38–59, 1995. View at Publisher · View at Google Scholar
  47. T. F. Cootes and C. J. Taylor, “Statistical models of appearance for computer vision,” World Wide Web Publication, 2001. View at Google Scholar
  48. T. F. Cootes, G. Edwards, and C. J. Taylor, “Comparing active shape models with active appearance models,” in Proceedings of the British Machine Vision Conference, pp. 173–183, 1999.
  49. N. N. Mehta, R. S. Azfar, D. B. Shin, A. L. Neimann, A. B. Troxel, and J. M. Gelfand, “Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the general practice research database,” European Heart Journal, vol. 31, no. 8, pp. 1000–1006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. T. Giles, M. Szklo, W. Post et al., “Coronary arterial calcification in rheumatoid arthritis: comparison with the Multi-Ethnic Study of Atherosclerosis,” Arthritis Research and Therapy, vol. 11, no. 2, article R36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Kobayashi, J. T. Giles, J. F. Polak et al., “Increased prevalence of carotid artery atherosclerosis in rheumatoid arthritis is artery-specific,” Journal of Rheumatology, vol. 37, no. 4, pp. 730–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Nicholls and P. Lundman, “Monitoring regression and progression of atherosclerosis,” in Cardiovascular Imaging for Clinical Practice, S. Nicholls and S. Worthley, Eds., pp. 237–373, Jones & Bartlett Learning, 1st edition, 2010. View at Google Scholar
  53. I. Shai, J. D. Spence, D. Schwarzfuchs et al., “Dietary intervention to reverse carotid atherosclerosis,” Circulation, vol. 121, no. 10, pp. 1200–1208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Yang, R. Wang, L. Li, A. Fenster, and M. Ding, “Classification of atorvastatin effect based on shape and texture features in ultrasound images,” in Medical Imaging, vol. 8669 of Proceedings of the SPIE, Lake Buena Vista, Fla, USA, February 2013.
  55. U. G. R. Schulz and P. M. Rothwell, “Major variation in carotid bifurcation anatomy: a possible risk factor for plaque development?” Stroke, vol. 32, no. 11, pp. 2522–2529, 2001. View at Google Scholar · View at Scopus
  56. V. Chalana and Y. Kim, “A methodology for evaluation of boundary detection algorithms on medical images,” IEEE Transactions on Medical Imaging, vol. 16, no. 5, pp. 642–652, 1997. View at Google Scholar · View at Scopus
  57. B. Van Ginneken, A. F. Frangi, J. J. Staal, B. M. Romeny, and M. A. Viergever, “Active shape model segmentation with optimal features,” IEEE Transactions on Medical Imaging, vol. 21, pp. 924–933, 2002. View at Publisher · View at Google Scholar
  58. U. G. R. Schulz and P. M. Rothwell, “Association between arterial bifurcation anatomy and angiographic plaque ulceration among 4,627 carotid stenoses,” Cerebrovascular Diseases, vol. 15, no. 4, pp. 244–251, 2003. View at Publisher · View at Google Scholar · View at Scopus